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1 Schrödinger Equation and Time Development Operators

• Reference: CQT Ch. 7

1.1 Schrödinger’s equation

⋆ Schrödinger’s (time-dependent) equation

i~
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉 (1)

applies to a closed or isolated quantum system, one that is not interacting with an external environment.

• However, the notion of “closed” is often extended to include cases in which one can for the purposes
one is interested in replace the actual interaction with the environment with an “effective” Hamiltonian,
which is often (but not always) time dependent, in such a way that (1) is a good approximation.

⋆ Quantum mechanics can also be applied to an “open system” which is some system of interest plus
an environment with which it interacts. In principle what one needs to do is to work out the quantum
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development of the combined system-plus-environment. But this is very difficult to do, so one makes various
approximations for the environment and the effects of the environment on the system of interest. Consider-
ation of open systems lies outside the scope of this set of notes.

• We call the time evolution resulting from Schrödinger’s equation unitary time evolution (the name will
be justified below) in contrast to the probabilistic time evolution of quantum systems taken up, for which
see Sec. 2.

1.2 Time-dependent kets and operators

⋆ What does it mean to take the time derivative of a ket |ψ(t)〉? What is meant by a time-dependent
operator, and its time derivative? This section relates these concepts to derivatives of ordinary (complex-
valued) functions. It can be skipped by readers who are already familiar with these ideas.

• In the technical sense all we mean when writing |ψ(t)〉 is that we have a collection of kets, one for
every possible value of t. Similarly, A(t) is a collection of operators, one for every possible value of t. The
choice could be completely arbitrary. E.g., A(t) = 0 if t is a rational number, A(t) = I if t is irrational. But
physicists are typically interested in cases where there is a continuous, differentiable, dependence on t.

⋆ A helpful perspective is to note the one-to-one correspondence between kets and column vectors, and
between operators and matrices, when an orthonormal basis has been specified. We assume the {|j〉} basis,
1 ≤ j ≤ d is time independent, i.e., we will be using the same basis for every time t. Then every element of
a column vector and every matrix element

ψj(t) = 〈j|ψ(t)〉, Ajk(t) = 〈j|A(t)|k〉 (2)

is an ordinary (complex-valued) function of t. Conversely, given a collection of d complex functions of time
ψj(t), or of d2 functions Ajk(t), we can use them to construct the corresponding ket or time-dependent
operator

|ψ(t)〉 =
∑

j

ψj(t) |j〉, A(t) =
∑

jk

Ajk(t) |j〉〈k|. (3)

◦Why insist that the basis be time-independent? Who would ever use a time-dependent basis? Sometimes
a time-dependent basis provides a very convenient way of thinking about the physics. See the example in
Sec. 3.3 below. But for present purposes a time-independent basis is the simplest and shortest route to
understanding.

⋆ Time derivative. If every function ψj(t) in the column vector that corresponds to |ψ(t)〉, (2), is
differentiable, we can define d|ψ(t)〉/dt as the ket such that the j′th component of the corresponding column
vector is dψj(t)/dt, or

d

dt
|ψ(t)〉 =

∑

j

dψj(t)

dt
|j〉. (4)

In the same way, if every Ajk(t) is differentiable we can define

A′(t) = dA/dt = ∂A/∂t (5)

as the operator whose matrix elements in our time-independent basis are given by:

〈j|A′(t)|k〉 = d〈j|A(t)|k〉/dt = dAjk/dt = A′
jk(t). (6)

That is, the matrix of the time derivative is obtained by taking time derivatives of the original matrix
elements. One can also write the result using dyads:

A′(t) = dA/dt =
∑

jk

A′
jk(t) · |j〉〈k|. (7)

◦ Some authors prefer to write ∂|ψ(t)〉/∂t in place of d|ψ(t)〉/dt, or ∂A/∂t in place of A′(t) or dA/dt.
There is no particular reason to use partial derivative notation when there are no other continuous variables
(e.g, positions in space) under consideration, but it also does no harm.
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⋆ While the above discussion was carried out using a particular orthonormal basis {|j〉}, the relationship
between |ψ(t)〉 and d|ψ〉/dt, or between A(t) and dA/dt does not depend upon the choice of basis. The reason
is that any other (time-independent, of course) orthonormal basis is related to the one we used by means of
a time-independent unitary transformation, and one can check that, for example, (7) is still correct if both
the dyads and the matrix elements in the final sum refer to this alternate basis.

2 Exercise. Make this argument explicit using an alternate basis {|̄〉}
⋆ If kets or operators can be differentiated they can also be integrated. Again, it helps to use a basis,

because while

B(t) =

∫ t

0

A(t′) dt′ (8)

looks rather abstract,

Bjk(t) = 〈j|B(t)|k〉 =
∫ t

0

〈j|A(t′)|k〉 dt′ =
∫ t

0

Ajk(t
′) dt′ (9)

simply tells us to integrate each of the matrix elements separately in order to get the matrix elements of the
integral. From this it follows by the standard rules of calculus that

A(t) = dB(t)/dt. (10)

• Similar expressions apply to integrals of kets.

1.3 Solutions to Schrödinger’s equation

⋆ In (1) the Hamiltonian H may depend on time, but we shall assume that at every time it is a Hermitian
operator: H(t) = H(t)†.

• Using a time-independent basis {|j〉} allows us to write (1) as a matrix equation

d〈j|ψ(t)〉
dt

=
∑

k

〈j|H(t)|k〉〈k|ψ(t)〉, (11)

which is to say

dψj/dt =
∑

K

Hjk(t)ψk(t), (12)

that is to say, a collection of coupled first-order linear differential equations with, in general, time-dependent
coefficients on the right side.

⋆ A standard result from the theory of differential equations is that (11), or equivalently (12) has a
unique solution provided ψ(t0), i.e., all the ψj(0) are given at some reference time t0.

◦ There are technical requirements that H(t), equivalently the Hjk(t), is not too badly behaved; they
will be satisfied in the usual physics applications. Discontinuities in H(t) as a function of t are allowed if
they are not too wild or too frequent.

◦ We are also assuming the Hilbert space is of finite dimension in order to avoid additional technical
complications.

⋆ It is useful to think of a solution |ψt〉 of Schrödinger’s equation (1) as the quantum analog of a
trajectory in classical phase space: the set of points traced out as a function of time by a solution to
Hamilton’s equations.

◦ The point a trajectory passes through at a particular time t0 determines the entire trajectory at all
times, provided the classical Hamiltonian H(t) (which can be a function of time) is known.

⋆ Let |φ(t)〉, |ψ(t)〉 be any two solutions of Schrödinger’s equation. Then

d

dt
〈φ(t)|ψ(t)〉 = 0 (13)
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follows from (1) and H = H†.

2 Exercise. Show it. Where did you use H = H†?

• Consequence of (13): the linear Schrödinger equation (1) preserves the norm (“length of the vector”):
‖ψ(t)‖ =

√

〈ψ(t)|ψ(t)〉 is independent of time t. In quantum theory one refers to this as unitarity—more
below.

◦ The classical analog of unitarity is Liouville’s theorem on the preservation of phase space “volume” in
classical mechanics.

1.4 Time development operator

⋆ Because (1) is a linear differential equation, one can show that if t and t′ are any two times there is a
linear operator T (t, t′), the time development operator, such that when |ψ(t)〉 is a solution to Schrödinger’s
equation

|ψ(t)〉 = T (t, t′)|ψ(t′)〉. (14)

• For a given t and t′ there is a single operator T (t, t′) such that for every solution to Schrödinger’s
equation with the given Hamiltonian (and a given time dependence if H(t) depends on time), thus for every
(quantum) trajectory, (14) is satisfied.

◦ Classical analogy: Given t and t′, there is a map T (t, t′) of the phase space Γ to itself which carries a
point γ′ to γ by treating γ′ at t′ as an initial condition and integrating Hamilton’s equations from t′ to t to
get the point γ.

• Note that in writing T (t, t′) we really have in mind a family of operators labeled by two real parameters,
t and t′.

⋆ For each t and t′, T (t, t′) is a unitary operator. This is a consequence of the fact, see (13) and the
following discussion, that

〈ψ(t)|ψ(t)〉 = 〈ψt′ |T (t, t′)†T (t, t′)|ψt′〉 = 〈ψ(t′)|ψ(t′)〉 (15)

holds whatever choice one makes for |ψ(t′)〉, i.e., whatever trajectory one considers.

◦ See Sec. 1.5 below for some properties of unitary operators. We are, as usual, employing the rules for
finite-dimensional Hilbert spaces, relying on the experts to assure us that they will (usually, anyway) work
for the infinite-dimensional cases we may be interested in.

⋆ As well as unitarity, the time-development operators satisfy the following important relations:

T (t, t) = I, (16)

T (t, t′)T (t′, t′′) = T (t, t′′), (17)

T (t′, t) = T (t, t′)† = T (t, t′)−1 (18)

2 Exercise. Give brief arguments (not a proof) for the validity of each of these.

⋆ In place of T (t, t′) with two arguments one can use

U(t) := T (t, 0), (19)

where now the family of unitary operators depends on only a single argument rather than two, and

|ψ(t)〉 = U(t)|ψ(0)〉 (20)

◦ In (19) the time t = 0 plays a special role. One could just as well use some other fixed reference time

tr and replace (19) with
U(t) := T (t+ tr, tr), (21)

In the following discussion we shall assume that tr = 0, i.e., use the definition (19)
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• In place of (16) to (18) we have the relations:

U(0) = I, (22)

U(−t) = U(t)† = U(t)−1. (23)

2 Exercise. Use the definition (19) to derive (23) from (18).

2 Exercise. Show that (17) is a consequence of (23).

• If U(t) is known one can use it to define T (t, t′):

T (t, t′) := U(t)U(t′)†. (24)

• The use of T (t, t′) or U(t) is somewhat a matter of taste. For some purposes the former and for some
purposes the latter gives simpler formulas.

• Schrödinger’s equation for time-development operators:

i~
d

dt
U(t) = H(t)U(t), i~

∂

∂t
T (t, t′) = H(t)T (t, t′), −i~ ∂

∂t′
T (t, t′) = T (t, t′)H(t′) (25)

where in the equations for T (t, t′) we use a partial derivative because there are two arguments, and t′ should
be held fixed while carrying out ∂/∂t. One could also write ∂U(t)/∂t.

2 Exercise. Derive these starting with (1), and (14) or (20).

1.5 Properties of unitary operators

⋆ An operator J that preserves the norm,

‖J |ψ〉‖2 = 〈ψ|J†J |ψ〉 = 〈ψ|ψ〉 (26)

for every |ψ〉 in the Hilbert space is called an isometry. (It “preserves the metric”, which in this case is given
by the norm.)

• An isometry J that maps the Hilbert space into itself is a unitary operator and satisfies the conditions

JJ† = J†J = I (27)

2 Exercise. Which of these equalities expresses the fact that J is an isometry?

• If the Hilbert space H is finite and J maps H into H (rather than, for example, into some larger Hilbert
space H′) then each equality in (27) implies the other, so only one of them needs to be checked to verify
that the operator J is unitary.

⋆ Important properties of unitary operators

• The product UV of two unitary operators U and V is a unitary operator, and therefore also the product
of any number of unitary operators is a unitary operator.

• The eigenvalues of a unitary operator are complex numbers of magnitude 1. (Real numbers ±1 are also
allowed.)

• The matrix of a unitary operator in an orthonormal basis {|bj〉} is a unitary matrix.

Ujk = 〈bj |U |bk〉. (28)

Conversely, if Ujk is a unitary matrix,
∑

jk Ujk|bj〉〈bk| is a unitary operator.

◦ A unitary matrix is one in which the columns are mutually orthogonal and normalized column vectors.
Equivalently, the rows are mutually orthogonal and normalized row vectors. As long as the matrix is finite
these two characterizations are equivalent; one implies the other.

2 Exercise. Explain why one of these characterizations corresponds to U ·U † = I, understanding this as
matrix multiplication and I as the identity matrix, and the other to U † · U = I.
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• If K is a Hermitian operator, eiK is a unitary operator, and if U is a unitary operator, then there is
an operator K such that U = eiK , and this K is Hermitian.

2 Exercise. Prove it. [Hint: spectral representation.]

2 Exercise. Show that any 2× 2 unitary matrix is of the form

eiφ
(

α β
−β∗ α∗

)

, (29)

where φ is a (real) phase, and α and β are complex numbers that satisfy a certain condition (which you
should work out).

1.6 Time-independent Hamiltonian

⋆ Important case: Hamiltonian H independent of time. Then T (t, t′) depends only on t− t′ and is equal
to U(t− t′):

T (t, t′) = U(t− t′) = exp[−i(t− t′)H/~]. (30)

• In particular, if

H =
∑

n

En|en〉〈en| =
∑

E′
jPj (31)

is the spectral representation of the time-independent Hamiltonian, where in the second form we assume
that j 6= k means E′

j 6= E′
k, then

U(t) =
∑

n

e−itEn/~ |en〉〈en| =
∑

j

e−itE′

j/~Pj , (32)

which is often a very convenient way to write U(t) = T (t− t′).

⋆ The most general solution to the Schrödinger equation can be written in the form

|ψ(t)〉 =
∑

n

cne
−iEnt/~|en〉, (33)

where the cn are time-independent complex numbers.

2 Exercise. Show that |ψ(t)〉 in (33) is indeed a solution of the Schrödinger equation (1) with H in (31)
independent of the time.

2 Exercise. Discuss why (33) is the most general solution of the Schrödinger equation. [What can you
say about t = 0?]

⋆ A special case is that of a stationary state in which only one of the coefficients cn in (33) is nonzero,
i.e., |ψ(t)〉 is an energy eigenstate with a phase that varies with time. In this case the corresponding physical
property, the projector |ψ(t)〉〈ψ(t)|, is independent of time, and if |ψ(t)〉 is thought of as a pre-probability,
see Sec. 2, the probabilities it assigns to the properties in any time-independent decomposition of the identity
{P k} are independent of time.

• Hence any quantum state with a well-defined energy (which is to say an energy eigenstate) has no time
dependence whatsoever. Contrast this with a classical system of fixed energy, e.g., a harmonic oscillator,
which can have a quite nontrivial time dependence.

• Interesting time dependence in the case of a time-independent Hamiltonian is only possible when
|ψ(t = 0)〉 is a superposition of states with different energies.

2 The Born Rule

2.1 Probabilities of properties

⋆ Starting with an initial state |ψ0〉 at time t0 Schrödinger’s equation can be integrated to yield |ψ1〉
at a time t1. What is the physical significance of |ψ1〉? How should one think about it? One way to think
about it is in terms of the probabilities it generates via what is known as the Born rule.

6



• One can think of |ψ1〉 is as a pre-probability, a mathematical tool for calculating probabilities of certain
physical properties at the time t1.

⋆ To be specific, suppose we are interested in the properties of the system at t1 corresponding to a
decomposition of the identity {P k}, I =

∑

k P
k. Here we are using the superscript k as a label, not as a

power, in order to reserve the subscript position to indicate the time.

◦ One possibility would be an orthonormal basis {|φk1〉}; P k = [φk1 ].

• The Born rule states that these probabilities are given by

Pr(P k) = 〈ψ1|P k|ψ1〉 = Tr{[ψ1]P
k}, (34)

where we are assuming a normalized initial state, so that ‖ψ0‖ = ‖ψ1‖ = 1. Otherwise, divide the right side
by 〈ψ0|ψ0〉 = 〈ψ1|ψ1〉.

◦ In the case where the {P k} are associated with an orthonormal basis {|φk1〉}, P k = [φk1 ], one can also
write

Pr(φk1) = |〈φk1 |ψ1〉|2, (35)

where the inner product 〈φk1 |ψ1〉 is sometimes referred to as a probability amplitude.

2 Exercise. Show that the different expressions in (34) and (35) give the same result.

◦ These probabilities depend, of course, on the assumed state or property |ψ0〉 at t0, and sometimes it is
useful to include that fact in the notation by writing Pr(P k) as a conditional probability Pr(P k |ψ0), where
the expression to the right of the vertical bar | is the condition; read this as “the probability of P k at time
t1 given [ψ0] (or |ψ0〉) at t0.”

⋆ As is obvious, these probabilities also depend upon the choice of decomposition {P k} (or orthonormal
basis {|φk1〉}). Overlooking this fact can give rise to confusion, because different decompositions may be
incompatible with each other, and assigning probabilities simultaneously to noncommuting properties or
projectors does not make sense.

• So what is the right set of properties {P k} to use at time t1? This question has no right answer.
Typically a decomposition is chosen because the corresponding properties are interesting for some reason.
One reason they might be interesting is that the decomposition is associated with some physical variable V
that one is interested in; see the discussion below.

⋆ A particular case: at t1 use the decomposition P 1 = [ψ1], P
2 = I − [ψ1]. The Born rule then tells us

that P 1 is certain (probability 1) at time t1, given |ψ0〉 at t0. Thus a measurement arranged to determine
this particular property at t1 will always show that the system was, just before the measurement, in (the
ray corresponding to) |ψ1〉, rather than in the subspace corresponding to its orthogonal complement.

2 Exercise. Suppose that the orthonormal basis {|φk1〉}) includes |ψ1〉, i.e., |ψ1〉 is in the same ray as one
of the basis vectors. What probability does the Born rule assign to each |φk1〉?

2.2 Physical variables

⋆ let V = V † be the Hermitian operator corresponding to a physical variable or “observable”. There is
a unique decomposition of the identity {P k} associated with V in the sense that

V =
∑

k

v′kP
k; j 6= k implies that v′j 6= v′k. (36)

• The probability that V takes on one of its eigenvalues, say V = vk, is then just the probability of the
projector P k.

⋆ A physical variable V is like a random variable in ordinary probability theory, and hence it makes
sense to talk about its average value 〈V 〉 and its variance 〈V 2〉 − 〈V 〉2 (the square of the standard deviation
∆V ).

• In particular, we can use (34) to write

〈V 〉 =
∑

k

v′k Pr(P
k) =

∑

k

v′k〈ψ1|P k|ψ1〉 = 〈ψ1|
∑

k

v′kP
k|ψ1〉 = 〈ψ1|V |ψ1〉 (37)
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◦ And in exactly the same way, 〈V 2〉 = 〈ψ1|V 2|ψ1〉.
⋆ Formulas (37) is a very convenient way to calculate 〈V 〉 starting from a pre-probability |ψ1〉, and it

should be memorized. By setting V = P k one obtains (51), since Pr(P k) = 〈P k〉
• As in the case of other extremely convenient and simple formulas, it is wise to keep in mind some

limitations.

• First, if V can take on more than two values, 〈V 〉 does not determine the probability distribution for
V , so the latter contains additional information not found in 〈V 〉.

2 Exercise. Show that if V can only take on two values, the two probabilities are uniquely determined
if 〈V 〉 is known.

• Second, suppose that V and W are two Hermitian operators that do not commute. Then because the
average defined in (37) is linear in its argument, it follows that

〈V +W 〉 = 〈V 〉+ 〈W 〉. (38)

There is nothing wrong with this as a mathematical equation; it holds both when VW =WV and also when
VW 6=WV . However, in the latter case it is difficult to give it a physical interpretation, because V and W
cannot (at least in general) be assigned values simultaneously, and neither of them commute with their sum
S = V +W . Consequently, (38) is a relationship among the averages of three operators to which one cannot
ascribe simultaneous values. One may, however, be tempted by the simplicity of (38) to suppose that such
simultaneous values exist.

• The assumption that physical variables (observables) can simultaneously possess definite values even
when the operators do not commute is one form of what is known as a hidden variables theory : supplementing
the quantum Hilbert with additional stuff because it allows what the Hilbert space does not.

◦ Despite an enormous amount of time expended on them, it seems safe to say that hidden variables the-
ories have not yet produced any useful resolution of any of the conceptual difficulties of quantum mechanics.

2.3 Probabilities and measurements

⋆ It is often said that (34) will give the probabilities for the different outcomes of a measurement designed
to measure the decomposition {P k} or, equivalently, designed to measure the physical variable V with which
{P k} is associated through (36).

◦ Measuring V is the same thing as measuring the decomposition {P k}, in the sense that each eigenvalue
v′k of V is associated with a unique projector P k, and vice versa.

• Identifying Pr(P k) with the probability of a measurement outcome is correct if one keeps in mind that
a somewhat idealized type of measurement is in view, one in which each P k in the decomposition leads to
a distinct measurement outcome. Imagine that the measuring apparatus has a pointer pointing at a scale
on which k (or v′k) is indicated after the measurement is complete. Keep in mind that measurements tend
to have significant effects upon the measured system, and the measured system may even disappear during
the measurement process. Thus the measurement outcome (pointer position) is telling one something about
properties of the system just before the measurement took place.

◦ Matters become clearer when one sets up models for quantum measurements and analyzes (in quantum
terms, of course) what happens.

• Incompatible properties such as the V and W considered in connection with (38) cannot be simulta-
neously measured. The reason is that there are no values to be simultaneously measured; even the most
competent experimentalist cannot design apparatus to measure what is not there.

◦ Keeping this in mind avoids falling into the hidden variables trap discussed above.

• In fact, from the operational point of view checking the equality in (38) requires a large number of
repeated measurements. To determine 〈V 〉 one needs several repeated measurements. For each one the
system is prepared in the same |ψ0〉 at the time t0, allowed to evolve to the time t1, and then a measurement
is carried out yielding one of the values of k in (36) (equivalently, one of the eigenvalues of V ). Since
successive measurements will in general yield different values, it is necessary to carry out a sufficiently large
number of measurements so that one can be reasonably confident that 〈V 〉 has been determined with the
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desired accuracy. After this has been done another independent series of measurements, in each case starting
with |ψ0〉 and measuring W (or the associated decomposition of I) at t1, is required in order to determine
〈W 〉. Each time a measurement is made the system must be thrown away after the measurement because
even an ideal measurement can produce nonnegligible changes in the measured system, so there is no way
of combining the V and W measurements. Finally, a third series of measurements is required to determine
the average value of S = V +W . Thus a long, time consuming process.

2.4 Averages as a function of time

⋆ It is sometimes of interest to discuss how the average of some physical variable V as given by (37),
rewritten as

〈V (t)〉t = 〈ψ(t)|V (t)|ψ(t)〉, (39)

depends upon the time t, assuming that |ψ(t)〉 is a solution to Schrödinger’s equation with a fixed initial
state |ψ0〉 at an initial time t0 (which could be T0 = 0. We also allow for the possibility that the physical
variable V depends upon the time, i.e., has time-dependent matrix elements in a fixed orthonormal basis,
see Sec. 1.2.

⋆ In particular, we can ask for the time derivative d〈V (t)〉t/dt. If one is not familiar with taking
derivatives of an expression like that found on the right side of (39) it is helpful to write it out using a fixed
(time-independent) orthonormal basis:

〈V (t)〉t = 〈ψ(t)|V (t)|ψ(t)〉 =
∑

j,k

〈ψ(t)|j〉 · 〈j|V (t)|k〉 · 〈k|ψ(t)〉. (40)

• When written in this form it is evident that we can take the time derivative of 〈V (t)〉t by applying the
usual rule for derivatives of products to each of the summands on the right side of (40). The time derivatives
d〈ψ(t)|j〉/dt and d〈k|ψ(t)〉/dt can be written in terms of the Hamiltonian by using (11) and its adjoint (take
the complex conjugate of both sides). And d〈j|V (t)|k〉/dt = 〈j|V ′(t)|k〉, see (6). After some rewriting one
arrives at

d〈V (t)〉t
dt

=
i

~
〈ψ(t)| [H(t), V (t)] |ψ(t)〉+ 〈ψ(t)|V ′(t)|ψ(t)〉, (41)

where the last term is sometimes written as 〈ψ(t)|∂V/∂t|ψ(t)〉; see the comments in Sec. 1.2.

• The same result can be obtained more quickly by writing

d

dt
〈ψ(t)|V (t)|ψ(t)〉 =

(

d〈ψ(t)|/dt
)

V (t)|ψ(t)〉+ 〈ψ(t)|dV/dt|ψ(t)〉+ 〈ψ(t)|V (t)
(

d|ψ(t)〉/dt
)

, (42)

and evaluating the derivatives of the ket and bra using Schrödinger’s equation (1) and its adjoint.

⋆ If V is independent of the time, which does not by itself mean that 〈V 〉t is independent of the time,
then the last term in (41) is absent, and the time derivative of the average of V is equal to (i/~) times the
average of its commutator with the Hamiltonian.

d〈V 〉/dt = (i/~)〈 [H(t), V ] 〉. (43)

• In the case where both H and V are independent of time and the two operators commute one refers
to the physical variable V as a constant of the motion. In this case d〈V 〉/dt = 0, as one might expect
for something that could be called a constant of the motion. One can use the fact that H and V can be
simultaneously diagonalized to prove a stronger result: not only 〈V 〉 but also the probability of each projector
P k in the associated decomposition (36) is independent of t.

2 Exercise. What are the constants of the motion of a classical particle moving in a spherically-
symmetrical potential? What does this suggest in terms of operators that commute with the quantum
Hamiltonian?

⋆ Despite its elegant appearance, giving a realistic physical interpretation to (41) is far from straight-
forward.
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• Consider the case where V ′(t) = 0, so the final term in (41) can be ignored, but assume that [H,V ] 6= 0,
so there is a nontrivial time dependence of 〈V 〉t. How would one check this experimentally by means of
measurements? Here is what would be required.

• First fix a time t1 and by repeatedly preparing the quantum system in the same state at the initial
time t0 determine the probability distribution for the P k, and use this to find 〈V 〉t1 . To do this accurately
may require many repeated measurements. Next fix a second time t2 = t1 + ∆t, where ∆t is a small but
finite time difference. Carry out a large number of repeated experiments to find the probabilities of the P k

at this new time. From this find 〈V 〉t2 . Finally construct a numerical approximation

(〈V 〉t2 − 〈V 〉t1)/∆t (44)

in order to estimate d〈V 〉/dt at t1.
◦ Note that one cannot carry out a measurement at t1 and then let the same system evolve for an

additional time ∆t before carrying out a second measurement to determine whether V has changed; in
general measurements produce nonnegligible perturbations on the measured system.

• An alternative way of thinking about (41) is to imagine a large number of identical but independent
systems all prepared in the same initial state and allowed to evolve using identical Hamiltonians. Then
〈V 〉 might be interpreted as an average over all these systems, and the experimental check would consist in
sacrificing a small fraction, a random sample, of the systems to measurement at a time t and throwing them
away; then sacrificing additional systems at time t+∆t and throwing them away, and so forth.

◦ However, to do analyze this properly in quantum mechanical terms one should use the Hilbert space of
the many different systems considered as a single (tensor product) Hilbert space. That analysis lies outside
the scope of these notes.

3 Two-Level Systems (Spin Half)

• Reference: CQT Sec. 4.2

3.1 Notation

• We are interested in simple examples of unitary time development in the simplest quantum systems,
Hilbert space of dimension 2.

⋆ Any quantum two-level (two-state) system is “the same” as any other so far as the formal math is
concerned. However, thinking of it as a spin-half particle gives a very nice geometrical picture of what is
going on, and picture is realized physically in experiments in which such a particle is placed in a magnetic
field and its spin precesses. Hence nowadays it is customary to discuss the dynamics of any two-level quantum
system using what is often called the “Bloch sphere” picture

– The “qubit” in quantum information is a two-level system

• We choose an orthonormal basis

|z+〉 = |0〉, |z−〉 = |1〉, (45)

where the kets are eigenvectors of the operator Sz for the z component of spin angular momentum, with
eigenvalues +~/2 and −~/2, respectively.

◦ From now on we choose units with ~ = 1, so these eigenvalues are ±1/2.
– The |0〉, |1〉 notation is widely used in quantum information.

• Let w be a direction in space corresponding to angles (θ, φ) in spherical polar coordinates. Then a
normalized state corresponding to Sw = +1/2 can be written in the form

|w+〉 = cos(θ/2)e−iφ/2|z+〉+ sin(θ/2)eiφ/2|z−〉

= cos(θ/2)e−iφ/2
(

|z+〉+ tan(θ/2)eiφ|z−〉
)

. (46)

◦ Remember that multiplying a ket by a nonzero complex number does not alter its physical significance.
It is convenient to think of kets for spin half as being of the form |z+〉+γ|z−〉, or |0〉+γ|1〉 in the terminology
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of quantum information, where the “physics” is determined by the complex number γ. In particular, in terms
of the Bloch sphere picture, γ = 0 is the north pole, γ = ∞ is the south pole, and γ = eiφ corresponds to
the equator of the Bloch sphere, θ = π/2, with φ = 0 the positive x axis.

• Matrices and column vectors will always be written using the {|z+〉, |z−〉} basis:

|z+〉 =
(

1
0

)

, |z−〉 =
(

0
1

)

,
√
2|x+〉 =

(

1
1

)

,
√
2|x−〉 =

(

1
−1

)

, (47)

and so forth. There is some arbitrariness in the choice of overall phase; e.g., multiplying the |x+〉 or |x−〉
column vectors by −1 would be just as good.

2 Exercise. Write |y+〉, |y−〉 and |w+〉 as column vectors, where w corresponds to θ = 120◦ and φ = 145◦.

• Note that |z±〉 are eigenkets of Sz = σz/2, etc.; recall that the Pauli matrices are

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

, (48)

and the spin operators (when ~ = 1) are these times a factor of 1/2: Sy = 1
2σy.

⋆ Any 2× 2 matrix M can be written in the form

M = a0I + a1σx + a2σy + a3σz, (49)

where the aj are complex coefficients uniquely determined by M .

◦ M is Hermitian if and only if all the aj are real.

2 Exercise. Prove it.

3.2 Constant Hamiltonian

⋆ Let us work out the dynamics in the case in which—with ~ = 1, so energy is the same as an angular
frequency—the Hamiltonian is

H = 1
2~ω · ~σ = 1

2 (ωxσx + ωyσy + ωzσz), (50)

where ~ω has three real coefficients, so H is Hermitian. One could add a constant times the identity, but this
does nothing but add a time-dependent overall phase to solutions of the Schrödinger equation, which does
not affect the physics.

– The factor of 1
2 is there to spare us a factor of 2 later on. It is “natural” if one thinks of H as

ωxSx + ωySy + ωzSz.

◦ A Hamiltonian of the form (50) results when a magnetic field is applied in the direction ~ω (or the
opposite direction, depending on the sign of the gyromagnetic ratio). It is thus rather natural, albeit
somewhat careless, to refer to ωx, ωy, ωz as the “components of the magnetic field.” This terminology will
be used frequently in the following discussion.

⋆ Consider the case ωx = ωy = 0, a magnetic field in the z direction. Then

H =
ωz

2
σz =

(

ωz/2 0
0 −ωz/2

)

. (51)

• As H is time independent, we can use (30):

U(t) = e−itH =

(

e−iωzt/2 0
0 eiωzt/2

)

. (52)

• To see what this means, work out

U(t)

(

1
aeiφ

)

= e−iωzt/2

(

1
aei(φ+ωzt)

)

. (53)
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◦ Thus ignoring the initial phase factor, which doesn’t affect the physics, we see that the ket corresponding
to w = (θ, φ) rotates into w = (θ, φ + ωzt). The dynamics corresponding to (51) is a rotation by an angle
ωzt about the z axis, which is “positive” (counterclockwise when looking down the z axis towards the Bloch
sphere) when ωzt is positive. Thus in this case unitary dynamics means the Bloch sphere rotating at a
uniform speed about the z axis.

• Any unitary transformation on a 2-dimensional Hilbert space can always be thought of as a rotation
of the Bloch sphere by some amount around some axis. Only proper rotations are allowed (no reflections).
Very useful geometrical picture.

⋆ For the most general time-independent Hamiltonian (50) of a two-state system (again, adding a0I to
H does not change the dynamics, which is why we have omitted this term), the time development operator
U(t) is constructed by writing

~ω = ω n̂, ω =
√

ω2
x + ω2

y + ω2
z , (54)

where n̂ is a unit vector in the direction of ~ω. Then U(t) = e−iHt is the unitary corresponding to a rotation
of the Bloch sphere by t ~ω, understood as a rotation (in a positive sense if t is positive) by ωt radians about
an axis given by the unit vector n̂.

2 Exercise. Let σ be an operator such that σ2 = I. Derive the formula

eiθσ = (cos θ)I + i(sin θ)σ. (55)

by expanding the exponential in a power series.

2 Exercise. Show that
σn̂ = n̂xσx + n̂yσy + n̂zσz, (56)

where n̂ is a unit vector, is similar to σz in that it is Hermitian and its square is equal to I.

2 Exercise. Show that the unitary time development operator corresponding to H in (50) is given by:

U(t) = (cosωt/2)I − i(sinωt/2)σn̂. (57)

3.3 Time dependent Hamiltonian

⋆ The unitary time development of a 2-state system with a general H(t) is hard to work out in closed
form, but the following intuitive picture is helpful. Let H be of the form (50), but with time-dependent
coefficients ωx(t), ωy(t), ωz(t). Then T (t+∆t, t) for small ∆t corresponds to a rotation of the Bloch sphere
about the axis defined by ~ω(t) by an angle |~ω(t)|∆t.

• Suppose in particular that ~ω(t) is varying slowly in comparison to the precession rate |~ω(t)|. Then
it is plausible that the angle θ′ between the direction w defined by the ket (on the Bloch sphere) and the
instantaneous direction of ~ω(t) will remain roughly constant.

– This adiabatic approximation is not perfect, but often provides a good approximation.

⋆ A case that is exactly solvable in closed form corresponds to a magnetic field of constant magnitude
rotating at a uniform rate about a fixed axis.

• The “trick” for making progress is to use a “rotating coordinate system,” which is of interest in itself.

• In quantum mechanics a “coordinate transformation” usually means switching from one orthonormal
basis to another for representing kets and operators as vectors and matrices. Such basis changes are associated
with unitary operators or matrices. Thus let {|bj〉} and {|b̄k〉} be two orthonormal bases and |ψ〉 some ket.
Then

〈b̄k|ψ〉 =
∑

j

〈b̄k|bj〉〈bj |ψ〉. (58)

2 Exercise. Show that Ukj = 〈b̄k|bj〉 is a unitary matrix.

◦ Thus in quantum mechanics a transformation to a moving coordinate system will be associated with a
time-dependent unitary operator or matrix.

◦ Consider a particular example. The Hamiltonian H = 1
2ωzσz in (51) leads to a precession of the Bloch

sphere about the z axis, (52). So if we imagine ourselves in a coordinate system rotating along with the
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Bloch sphere, the ket |ψ(t)〉 on the right side of (53) will look as if it were constant. Thus if S(t) corresponds
to a transformation to the rotating system, we expect

|ψ̄〉 = S(t)|ψ(t)〉, (59)

to be independent of time, which can be achieved by letting S(t) = U †(t) = U(−t).
⋆ Consider the general transformation

|ψ̄(t)〉 = S(t)|ψ(t)〉; |ψ(t)〉 = S†(t)|ψ̄(t)〉, (60)

with S(t) unitary for each t, but otherwise an arbitrary function of t.

• Construct the Schrödinger equation for |ψ̄(t)〉

i
d

dt
|ψ̄(t)〉 = i

dS(t)

dt
|ψ(t)〉+ S(t)

(

i
d

dt
|ψ(t)〉

)

=

(

i
dS(t)

dt
S†(t)

)

|ψ̄(t)〉+
(

S(t)H(t)S†(t)

)

|ψ̄(t)〉

= H̄1(t)|ψ̄(t)〉+ H̄2(t)|ψ̄(t)〉 = H̄(t)|ψ̄(t)〉. (61)

◦ That is to say |ψ̄(t)〉 satisfies Schrödinger equation with a new Hamiltonian H̄(t) = H̄1(t) + H̄2(t)

2 Exercise. Show that both H̄1(t) and H̄2(t) are Hermitian operators, given that S(t) is at every time a
unitary operator.

◦ The term H̄2(t) would be present even if the transformation were time independent, i.e., S(t) a constant,
whereas H̄1(t) is a consequence of the fact that S(t) depends on the time.

⋆ Now apply this to the case

H(t) = 1
2ωzσz +

1
2ωp [(cosωrt)σx + (sinωrt)σy] , (62)

which corresponds to a magnetic field with a constant component in the z direction along with a perpendicular
component rotating in a counterclockwise direction in the x, y plane with an angular frequency ωr.

– Be careful to distinguish ωp, the magnitude of the transverse component, from ωr, the rate of rotation.

• Let us introduce a rotating coordinate system in which H̄(t) is independent of time, as then we can
employ the procedure of Sec. 3.2. The earlier discussion suggests using

S(t) =

(

eiωrt/2 0
0 e−iωrt/2

)

, (63)

since if the coordinate system is itself rotating at a rate ωr, in it the magnetic field will appear to be constant.

◦ The result, see (61), is

H̄1(t) = − 1
2ωrσz, H̄2(t) =

1
2 [ωzσz + ωpσx] . (64)

There is no longer any time dependence, only a constant magnetic field in the x, z plane.
– In particular, if ωp = 0 and ωr = ωz we have H̄ = 0, as expected.

2 Exercise. Derive (64).

⋆ A special but important case is that in which the rotation rate ωr of the magnetic field is set equal to
the precession rate ωz due to the constant field in the z direction, so that the all that remains in H̄ is the
perpendicular component 1

2ωpσx.

• Then in the rotating frame the Bloch sphere precesses about the x axis at a rate ωp.

◦ In particular, if the initial state is |z+〉, “spin in the z direction,” then in a time τ1 = (π/2)(1/ωp) it will
precess into the y (or −y) direction. But when viewed in the laboratory coordinate system the spin direction
is rotating rapidly in the x, y plane. In the terminology of magnetic resonance, turning on a perpendicular
oscillating component of the magnetic field for the time τ1 is referred to as a “π/2 pulse.”
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◦ In practice one does not try and produce a rotating magnetic field that is actually of the form (62).
Instead use

H(t) = 1
2ωzσz + ωp(cosωrt)σx. (65)

A simple oscillating field in the x direction is much easier to produce than a field rotating in the x, y plane.
One can think of the oscillating field as a superposition of two two rotating fields, one rotating clockwise
and the other counterclockwise. Only the one which is nearly constant in the rotating coordinate system
has a significant effect; the other can (typically, at least) be ignored because it is “far off resonance.”

4 Toy Models

4.1 Introduction

◦ Reference: CQT Sec. 7.4

• Basic strategy: set up as simple a model as possible, but with properties that are “genuinely quantum
mechanical.”

• Toy models are most useful in time-dependent situations where solving Schrödinger’s (time-dependent)
equation requires some effort.

– Even for force-free (V (x) = 0) motion of a particle in one dimension, solving Schrödinger’s equation is
not trivial.

⋆ Strategy is to discretize time, and we will assume that it takes on integer values: t = −1, 0, 1, 2, . . ..

◦ One could use t = n∆t where ∆t = 10−35 s, so time discretization is not in itself a particular limitation.

• Time development operator will be

T (t, t′) = U(t− t′) = T t−t′ (66)

where T is a single (time-independent) unitary operator, and t− t′ is an integer.
– Make T as simple as possible; we want to be able to work out the dynamics on the back of an envelope.

⋆ When using discrete time and a simple T we typically cannot think of T as coming about by solving
a continuous-time Schrödinger equation with a Hamiltonian H. Or, if there is a Hamiltonian it is something
quite complicated, and using it would defeat the purpose for which the toy model was introduced: having
something simple and easy to analyze.

• Toy models are particularly useful for understanding the stochastic or probabilistic aspects of quantum
time evolution.

• They are also of considerable help in resolving some of the paradoxes of quantum mechanics, conceptual
difficulties which are ignored or swept under the rug in typical textbook treatments.

4.2 One-dimensional hopping model

⋆ Label the sites of the toy model by m, −Ma ≤ m ≤ Mb. The finite integers Ma and Mb can be as
large as you want. Keeping them finite makes the Hilbert space finite. The kets |m〉 with m in this range
form an orthonormal basis of the Hilbert space:

〈m|m′〉 = δmm′ . (67)

⋆ Simple hopping dynamics: T = S where S is the shift operator:

S|m〉 = |m+ 1〉, S|Mb〉 = | −Ma〉. (68)

We are using periodic boundary conditions.

• S (therefore T = S) is unitary, since it maps an orthonormal basis onto an orthonormal basis.

2 Exercise. Prove that mapping an orthonormal basis onto an orthonormal basis is a necessary and
sufficient condition for a linear operator U on a finite-dimensional Hilbert space to be unitary.

2 Exercise. (Advanced). And what might go wrong with this if we have an infinite-dimensional Hilbert
space?
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Figure 1: One-dimensional toy model with detector

4.3 Hopping model with detector

⋆ See Fig. 1. The detector has two states n = 0 (ready) and n = 1 (particle detected).

• Combined system is a tensor product Hp ⊗Hd. Unitary dynamics for the combination is

T = SR = (S ⊗ I)R (69)

where
R|m,n〉 = |m,n〉 for m 6= 2; R|2, n〉 = |2, 1− n〉. (70)

◦ T is unitary because S = S ⊗ I (physicists use both) is unitary and R is unitary, and the product of
two unitary operators is unitary.

2 Exercise. Convince yourself that R is unitary.

• With the particle initially at m = 0 and the detector in the ready state n = 0, the unitary time
development is

|0〉p ⊗ |0〉d = |0, 0〉 7→ |1, 0〉 7→ |2, 0〉 7→ |3, 1〉 7→ |4, 1〉 7→ · · · , (71)

where |ψ〉t 7→ |ψ〉t+1 indicates what happens during a single time step.

2 Exercise. One could just as well have written T = RS in place of SR, but the result would be a bit
different. Discuss.

2 Exercise. Work out the time development starting with the following different initial states of the
particle at t = 0, assuming that the detector always starts off in the state n = 0.
(i) |m = 1〉. (ii) |m = 0〉+ |m = 2〉. (iii) |m = 0〉+ |m = 4〉.

• Using initial superpositions, (ii) or (iii) in the preceding exercise, allows one at certain times to have
superpositions of the toy detector in different states: a Schrödinger kitten. (Many standard quantum
paradoxes have toy counterparts.)

⋆ Born rule. Suppose that the initial state is

|ψ0〉 = (1/
√
2)(|0〉+ |1〉)⊗ |0〉 = (1/

√
2)(|0, 0〉+ |1, 0〉) (72)

Then after applying T 2 one arrives at

|ψ2〉 = (1/
√
2)(|2, 0〉+ |3, 1〉) (73)

• From this one can calculate various probabilities, e.g., for the detector:

Pr2(n = 0) = 〈ψ2|
(

Ip ⊗ [0]d
)

|ψ2〉 = 1/2, Pr2(n = 1) = 〈ψ2|
(

Ip ⊗ [1]d
)

|ψ2〉 = 1/2, (74)

where the subscript on Pr indicates the time (t = 2). For the particle position

Pr2(m = 2) = 〈ψ2|
(

[2]p ⊗ Id
)

|ψ2〉 = 1/2, Pr2(m = 3) = 〈ψ2|
(

[3]p ⊗ Id
)

|ψ2〉 = 1/2. (75)

with vanishing probability for other values of m.

⋆ More interesting are the joint probabilities:

Pr2(m = 2, n = 0) = 〈ψ2|
(

[2]p ⊗ [0]d
)

|ψ2〉 = 1/2 = Pr2(m = 3, n = 1), (76)
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and 0 for other choices of m and n.

• From the result (76) on can calculate conditional probabilities, e.g.,

Pr2(m = 2 |n = 0) = 1 = Pr2(m = 3 |n = 1), (77)

which is to say: if at t = 2 the detector has not triggered one can be sure that the particle is at m = 2,
whereas if it has triggered one can be sure that the particle is at m = 3.

2 Exercise. Show that (77) is a consequence of (76) using the usual definition of conditional probabilities:
Pr(A |B) = Pr(A,B)/Pr(B), assuming that Pr(B) 6= 0.

• Although derived in the context of a toy model, (77) is an example of the sort of thing which can give
meaning to the somewhat vague notion of “measurement” presented in many quantum textbooks. When
properly analyzed in quantum mechanical terms it is possible to understand how measurements reveal (or
fail to reveal) physical properties of measured systems.

◦ The use of conditional probabilities is what allows reasonable inferences from measurements without
invoking the notion of “wavefunction collapse.” (Or, to turn it around, “wavefunction collapse” as employed
in quantum textbooks is never a physical process, but instead a tool for calculating conditional probabilities.)

4.4 Alpha particle decay

−1 −2 −3 −4

1 2 3 4

0α δ

β

γ

Figure 2: Toy model for alpha decay

⋆ Radioactive decay is a common phenomenon. Figure 2 represents a toy model of such a decay process.
While labeled “alpha decay” it could equally well be a toy model of beta decay or gamma decay or an atom
emitting a photon. When the alpha particle is at m = 0 it is inside the nucleus, whereas the other m values
represent possible locations outside the nucleus.

• The unitary time transformation in this case is a modified shift operator Sa, compare (68),

Sa|m〉 = |m+ 1〉 for m 6= 0,−1,Mb; Sa|Mb〉 = | −Ma〉
Sa|0〉 = α|0〉+ β|1〉; Sa| − 1〉 = γ|0〉+ δ|1〉. (78)

2 Exercise. Show that Sa is a unitary operator provided the coefficients α, β, γ, δ form a unitary matrix
(

α β
γ δ

)

. (79)

⋆ Unitary time development with the alpha particle initially inside the nucleus is given by:

|0〉 7→ α|0〉+ β|1〉 7→ α2|0〉+ αβ|1〉+ β|2〉
7→ α3|0〉+ α2β|1〉+ αβ|2〉+ β|3〉 7→ · · · , (80)

• The coefficient of |0〉 at time t is αt. The Born rule then gives

Prt(m = 0) = |α|2t = e−λt, with λ = −2 ln(1/|al|). (81)

That is, an exponential decay with time (note that t is an integer), similar to what is observed experimentally
for radioactive substances.

⋆ It is possible to add to the arrangement in Fig. 2 a detector similar to that in Fig. 1, and then work
out various probabilities. This is left as a (somewhat nontrivial) exercise.
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