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1 Unitary Transformations

⋆ Coordinate transformations play an important role in all branches of physics. Those that occur most
frequently in quantum mechanics are represented by unitary operators on the quantum Hilbert space.

• In fact, one can regard every unitary operator as representing in some sense a coordinate transformation,
though this is not always the most helpful point of view.

⋆ Reminder. A unitary operator U is one such that

U †U = I = UU †. (1)

• On a finite dimensional Hilbert space one of these equalities implies the other, so only one has to be
checked.

⋆ Unitary operators preserve inner products, and thus preserve norms :

|ψ′〉 = U |ψ〉, |φ′〉 = U |φ〉, 〈φ′|ψ′〉 = 〈φ|ψ〉, ‖ψ′‖ =
√

〈ψ′|ψ′〉 = ‖ψ‖ =
√

〈ψ|ψ〉. (2)

2 Exercise. Prove it.

◦ In fact, as sophisticates can show you, on a complex space a linear operator which preserves all norms
will also preserve all inner products. But the key thing is to remember is that a unitary operator preserves
all inner products (and therefore all norms).

• This is analogous to the fact that translations and rotations in ordinary three-dimensional space preserve
distances between points, and also angles between intersecting lines.

• Note that while a simple application of the unitary U is needed to transform a ket, the corresponding
transformation on an operator,

A′ = UAU †, (3)
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requires the use of both the unitary U and its adjoint U †, the inverse of U . That this is “natural” follows
from the observation that for a simple dyad,

|ψ′〉〈φ′| = U
(

|ψ〉〈φ|
)

U † (4)

if we use the definitions of |ψ′〉 and |φ′〉 in (2), along with the observation that (U |φ〉)† = 〈φ|U †.

◦ A helpful mnemonic for remembering (3) is to think of U as moving an object from a previous location
to a new location, U † as the reverse, moving the object from the new to the old location, and A as some
operation carried out on the object at the old location. Then A′ consists in first transporting the object
from the new location to the old location using U †, carrying out the operation A at the old location, and
transporting the result back to the new location using U . To make this more concrete, think of A as the
operation of sawing a block of wood into two pieces.

⋆ Two orthonormal bases {|bj〉} and {|cj〉} for the same Hilbert space can be regarded as alternative
coordinate systems which can be related by a unitary transformation

U =
∑

j

|cj〉〈bj |; |cj〉 = U |bj〉, [cj ] = U [bj ]U
†, (5)

where we use the abbreviation [ψ] = |ψ〉〈ψ| for a the projector on the space spanned by the normalized ket
|ψ〉. Thus the basis kets are transformed by U , and the corresponding projectors using the pair U and U †,
as in (3) and (4).

2 Exercise. Show that the operator U defined in (5) is unitary.

• It follows from the definition in (2) that the result of applying a unitary operator to any orthonormal
basis is a collection of kets that form an orthonormal basis. Conversely, if one has a linear operator that maps
some orthonormal basis into an orthonormal basis, it must be a unitary operator in light of the construction
in (5).

2 Rotations in Space

⋆ Rotating an orthogonal coordinate system in three dimensions yields another orthogonal coordinate
system.

2.1 Two dimensions

⋆ For simplicity, start with a vector ~v in two dimensions, Fig. 1(a), which is rotated in what is called an
active rotation by an angle θ to produce a vector ~v ′. The components are related by

~v ′ = R~v,

(

v′x
v′y

)

=

(

cos θ − sin θ
sin θ cos θ

)

·
(

vx
vy

)

. (6)

The 2× 2 matrix R is a unitary matrix with real components, thus a real orthogonal matrix.

θ
~v

~v ′

x

y

(a)

~v

x

y

x′

y′
θ

θ

(b)

Figure 1: (a) Vector rotated by angle θ, coordinates fixed. (b) Vector fixed, coordinates rotated by angle
−θ. In both cases the new components of the vector are related to the old ones by (6).
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• A mnemonic for the minus sign in the matrix is to consider a vector initially along the y axis, which
after a small rotation will have a negative x component.

⋆ One may prefer to leave the vector in place and rotate the coordinate system. This is called a passive

rotation. See Fig. 1(b). Let v′x, v
′
y be the coordinates of the unmoved vector in the new coordinate system.

Then (6) is again correct, but notice that in order to achieve this we had to rotate the coordinate system in
the opposite sense to that used for the vector in Fig. 1(a).

• The difference between active and passive transformations can be the source of endless confusion, and
there seems to be no remedy. The author of these notes will henceforth use active transformations: the
coordinate system is nailed down and stays there.

◦ Here is a little exercise that may help in seeing why the active and passive rotations seem to move in
opposite directions. Let us adopt Dirac notation to the matter at hand, and write

~v = |v〉, vx = 〈x̂|v〉, vy = 〈ŷ|v〉 (7)

in a fairly obvious notation, where x̂ and ŷ are unit vectors along the x and y axes, respectively. Then write

~v ′ = |v′〉 = R|v〉, v′x = 〈x̂|v′〉 = 〈x̂|R|v〉 = 〈x̂|Rv〉 = 〈R†x̂|v|.〉 (8)

And of course there is a similar way to write v′y. The point is that v′x comes about either from applying

R to ~v = |v〉 or from applying R† (in the case of a real matrix R† is the same as the transpose RT) to
the coordinate vector x̂. The point is that R and R†, whose product is the identity I, are rotations in the
opposite direction.

2.2 Three dimensions

⋆ Rotations in two dimensions commute with each other: R(θ)R(θ̄) = R(θ̄)R(θ). But in three dimensions
this is no longer the case: in general, two rotations do not commute, and it makes a difference in which order
they are applied.

2 Exercise. Lay down a book in front of you in such a way that you you are looking at the front cover,
with the spine of the book on the left. Rotate the book 90◦ counterclockwise looking down on it from above,
and then take the rotated book in your right hand and rotate it 90◦ towards you. Next do the two 90◦

rotations in the opposite order. Notice the difference?

⋆ We can represent rotations by 3 × 3 matrices which when acting on a column vector produce a new
column vector. (Remember, these are active rotations: the vector gets pushed to some other position.)

⋆ Example. The matrix

Rz(θ) =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1



 (9)

represents a rotation by an angle θ in the positive direction about the z axis.

◦ This should be pretty obvious, since this is the rotation of the x and y components of the vector that
we encountered earlier in (6), and the z component is held fixed.

◦ Positive direction: Put the thumb of your right hand upwards along the z axis; your fingers curl in the
direction of the rotation when θ is positive.

2 Exercise. Write down the matrices Rx(θ) and Ry(θ) for rotations of an angle θ about the x and about
the y axes.

2 Exercise. Show that Rx(π/2)Rz(π/2) is not equal to Rz(π/2)Rx(π/2).

⋆ Euler angles. Any rotation in 3 dimensions can be carried out using the following sequence: Rotate
by an angle α about the z axis, an angle β about the x axis and an angle γ about (once again!) the z axis.
The triple (α, β, γ) is known as the Euler angles.

◦ Warning! This is only one of the ways in which Euler angles can be defined. Note in particular that we
are rotating about axes fixed in space. It is also possible to attach axes to the object being rotated and make
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subsequent rotations about these axes fixed to the object. And even if one fixes the axes in space (which is
what we will be doing) there are other choices of three axes to rotate about.1

◦ Fortunately, in the remainder of these notes we shall not use Euler angles. . . .

⋆ Instead of the Euler angles, a rotation in three dimensions can be represented by a single vector ~ω,
interpreted in the following way. The direction of ~ω gives the axis of rotation, and the magnitude of the
rotation (in radians) by the length |~ω| of this vector. If we write ~ω = ωn̂, where n̂ is a unit vector, then
positive ω corresponds to the direction your fingers curl when your right thumb is in the direction n̂.

◦ Note that in this description there are three real parameters, the three components of ~ω = (ωx, ωy, ωz),
just as there are three independent Euler angles.

◦ It is convenient to restrict |~ω| to the range from 0 to π.

2 Exercise. Why does this suffice?

3 Quantum Rotations

3.1 Introduction

⋆ Suppose we have a description of a quantum object using some ket in a Hilbert space. The description
may require the use of a coordinate system. Thus in the case of a spin-half particle the ket |z+〉 tells us
that the spin angular momentum is positive in the z direction. But in writing this down, we must know
that the z direction is. Suppose that it is upwards, towards the ceiling. But now what about |x+〉? That
requires choosing some horizontal direction for x. With that we are done, because the y direction will be
perpendicular to both x and z, and the triple x, y, z forms a right-handed coordinate system. Thus we know
what |y+〉 means, and also |w+〉 for w any direction in space.

• And suppose we change our coordinate system? If the new x axis is directed towards the ceiling, what
we earlier called |z+〉 ought now to be |x+〉 in the new coordinate system.

• In discussing changes of coordinate system, passive transformations seem more “natural”, but in these
notes we will stick to active transformations: we think of rotating the particle while leaving the coordinate
system firmly attached to the laboratory.

◦ But the laboratory is attached to the earth, and the earth is rotating. Well, let us do our experiments
quickly. It didn’t take very long for a silver atom to get from one end of the Stern-Gerlach magnet to the
other. . . .

• And it really is possible to “rotate” the spin direction of a spin-half particle; this can be done by
applying a suitable magnetic field for a suitable time interval.

• There are lots of very elegant things to say about rotations and angular momentum in quantum
mechanics. These notes are restricted to the basics which every student of the subject should know (preferably
by heart).

⋆ FIRST VERY IMPORTANT FORMULA. The unitary quantum mechanical operator which represents
an active rotation ~ω can be written as

R(~ω) = exp[−i~ω · ~J ], (10)

where ~ω · ~J = ωxJx + ωyJy + ωzJz, and Jx, Jy and Jz are (dimensionless) angular momentum operators.
They are Hermitian operators, and this implies that R(~ω) is a unitary operator. In fact,

R†(~ω) = exp[+i~ω · ~J ], (11)

represents a rotation about the same axis by the same amount, but in the opposite sense. Thus it is the
inverse of R(~ω): R†(~ω)R(~ω) = I.

◦ Angular momentum has the same dimensions as Planck’s constant, and in quantum mechanics it is
convenient to measure angular momentum in units of ~. If one does that the angular momentum operators
are dimensionless. However, if one uses dimensioned angular momentum operators (e.g., expressed in units
of kg m2/s) then it is necessary to rewrite (10) as

R(~ω) = exp[−i~ω · ~J/~], (12)

1Various conventions are discussed in H. Goldstein,Classical Mechanics, 2d edition (Addison-Wesley, 1981). See ’Euler
angles’ in the index.
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in order for the exponent to be dimensionless. Usually it is pretty obvious where to insert extra factors of ~
into formulas if one is using dimensioned operators, and as the formulas are simpler with ~ missing (or, as
one often says, in units in which ~ = 1), the ~’s will be omitted in what follows.

⋆ SECOND VERY IMPORTANT FORMULA

[Jx, Jy] = JxJy − JyJx = iJz; [Jy, Jz] = iJx; [Jz, Jx] = iJy. (13)

• These commutation relations of the angular momentum operators should be committed to memory. It
suffices to remember the first, and then keep in mind that the others are obtained by cyclic permutation of
xyz → yzx→ zxy.

3.2 Exponentials of operators

• The first important formula will do us no good unless we know what to do with exponentials of
operators. So a brief interlude on that subject.

⋆ A matrix M can be diagonalized by a unitary transformation U if it can be written as:

M = UDU †, D =











m1 0 . . . 0
0 m2 . . . 0
...

...
. . .

...
0 0 . . . mn











. (14)

The diagonal matrix D has the eigenvalues ofM on its diagonal. If f(z) is some numerical (perhaps complex)
function that is defined for each of the mj , then we can define

f(D) :=











f(m1) 0 . . . 0
0 f(m2) . . . 0
...

...
. . .

...
0 0 . . . f(mn)











, and f(M) := Uf(D)U †. (15)

◦ Comment. While we will not need it for discussing rotations, the same trick will work for a matrix
which can be diagonalized by a similarity transformation, M = SDS−1, where S is any invertible matrix,
that is, a matrix which has an inverse S−1, with SS−1 = S−1S = I. Just replace U by S and U † by S−1 in
the above.

◦ Comment. There can be troublesome cases. E.g., if f(z) = ln(z) and one of the eigenvalues of M
is 0. From this perspective f(z) = ez is particularly nice, since it is defined, and in fact analytic, for any

(complex) value of z.

⋆ A second way to define f(M) is to use a power series expansion for f(z), assuming it has one. In
particular, we can write

exp[M ] = I +M +M2/2! +M3/3! + · · · , (16)

where M2, M3, etc. are matrix products. The series for exp[M ] converges for any finite matrix M .

2 Exercise. Show that (16) agrees with (15) if M can be diagonalized and f(z) = ez, by showing that
Mn has a simple form in terms of D.

⋆ While the preceding discussion is in terms of matrices it works in the obvious way for operators. Given
the spectral form of a normal operator A with eigenvalues αj we can define f(A) using:

A =
∑

j

αjPj , f(A) =
∑

j

f(αj)Pj , (17)

where {Pj} is the corresponding decomposition of the identity. Or if f(z) has a power series expansion, one
can use that, as in (16).
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4 Spin Half

4.1 Kets

⋆ Let w be a direction in space corresponding to the polar angles θ and φ, where θ is the angle between
this direction and the z axis, and φ the angle between this direction projected on the x, y plane and the x
axis. (This is the usual choice of polar angles.) The kets |w+〉 and |w−〉 corresponding to a spin angular
momentum of +1/2 and −1/2 (in units of ~) in the w direction are then defined to be:

|w+〉 = cos(θ/2)|z+〉+ eiφ sin(θ/2)|z−〉, |w−〉 = sin(θ/2)|z+〉 − eiφ cos(θ/2)|z−〉, (18)

where |z+〉 and |z−〉 are the orthonormal kets corresponding to the z component of angular momentum being
positive and negative, respectively.

2 Exercise. Check that |w+〉 and |w−〉 defined in this way are normalized and orthogonal to each other.

◦ In quantum information theory |z+〉 and |z−〉 are written as |0〉 and |1〉.
• Frequently used:

|x+〉 = |z+〉+ |z−〉√
2

, |x−〉 = |z+〉 − |z−〉√
2

, |y+〉 = |z+〉+ i|z−〉√
2

, |y−〉 = |z+〉 − i|z−〉√
2

. (19)

• Note that (18) employs a particular choice of overall phase; other choices are possible. The choice of
overall phase does not affect the physics, but can cause confusion if one starts a problem using one convention
and then switches to another.

⋆ Bloch sphere. There is a convenient geometrical representation of the states of a spin-half particle by
means of a sphere of unit radius centered at the origin. Let w be a point on the surface of the sphere with
polar coordinates θ, φ. Then one thinks of this point as associated with the projector |w+〉〈w+| onto the ray
corresponding to the ket |w+〉 as defined in (18).

• Because it represents projectors, the Bloch sphere picture is not affected by the choice of the overall
phase used for defining the kets in (18).

• Two states of a spin-half particle are orthogonal if the two projectors correspond to antipodes on the
Bloch sphere, points at opposite ends of a diameter passing through the center of the sphere. For example,
[z+] = |z+〉〈z+| is represented by the north pole and [z−] by the south pole.

◦ The fact that antipodes are 180◦ apart when viewed from the center of the sphere is somewhat confusing,
as the corresponding states are orthogonal, which one usually thinks of as perpendicular, i.e., with an angle of
90◦ between them. Just one of many instances where there is an annoying factor of 2 needed for interpreting
Bloch sphere angles. One just has to get used to this. The advantages of this geometrical representation far
outweigh the annoyances.

• The points on the surface of the Bloch sphere correspond to pure states, one-dimensional rays in the
Hilbert space. Points in the interior are used to represent density operators corresponding to mixed states,
which lie outside the scope of these notes.

4.2 Angular momentum operators

⋆ The matrices of the angular momentum operators for spin half are traditionally denoted by Sx, Sy, and
Sz in place of Jx, etc. Their matrices in the standard {|z+〉, |z−〉} basis (or {|0〉, |1〉} in quantum information
theory) are the Pauli matrices apart from a factor of 1/2:

2Sx = σx =

(

0 1
1 0

)

, 2Sy = σy =

(

0 −i
i 0

)

, 2Sz = σz =

(

1 0
0 −1

)

. (20)

◦ Note that the order is z+ (top row, first column) followed by z− (bottom row, second column). Thus
〈z+|σz|z+〉 = +1, 〈z+|σy|z−〉 = −i.

• The Pauli matrices have the following useful properties. They are Hermitian, something which is true
of any angular momentum operator (Jx = J†

x). But in addition, and these are special for spin half, each
Pauli matrix is unitary, and its square is the identity matrix I. Furthermore,

σxσy = −σyσx = iσz, σyσz = −σzσy = iσx, σzσx = −σxσz = iσy. (21)
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2 Exercise. Use matrix multiplication to check the first of the equations in (21)

2 Exercise. Show that (21) implies that (13) holds for spin half.

2 Exercise. Write the projectors [z+] and [z−] in terms of I and σz, and check that the square of each
projector is equal to itself, using properties of σz. Write [x+], [x−], [y+], and [y−] as 2× 2 matrices.

4.3 Rotations

⋆ Let us start by considering a particular example: a rotation by an angle ω about the z axis. What
will this do to the ket |x+〉? Let us apply (10) and see what happens:

R(ωẑ)|x+〉 = e−i(ω/2)σz |x+〉 = 1√
2

(

e−iω/2 0
0 e+iω/2

)

·
(

1
1

)

=
1√
2

(

e−iω/2

e+iω/2

)

. (22)

◦ Here we used the fact that σz, and thus −i(ω/2)σz is a diagonal matrix in order to set its exponential
equal to the diagonal matrix with exponentials of its eigenvalues on the diagonal.

• Suppose that ω = π/2, in which case we might expect the rotation to map |x+〉 onto |y+〉. However,
the final column vector in (22) is (e−iπ/4, eiπ/4)T rather than the (1, i)T we might have expected, see (19).
[To save space in writing it out it is convenient to transpose the column vector to a row vector; note that
the transpose, indicated by T, involves no complex conjugation, unlike the adjoint †.] Is something wrong?
No, because we can extract an overall factor of e−iω/2 from the column vector on the right side of (22) to
leave (1, eiω)T, which is just what one would expect: set θ = π/2 and φ = ω in (18). So the rotation is doing
what we expect.

2 Exercise. Show that with ω = π/2 matrix multiplication yields the result

R[(π/2)ẑ]σxR
†[(π/2)ẑ] = σy. (23)

Does this seem sensible? Might one have expected an extra phase factor in this case, say eiǫσy, in place of
σy? Why or why not?

⋆ Because σx is not diagonal, we cannot evaluate something like R(ωx̂)|y+〉 by simply taking exponentials
of the diagonal elements of −i(ω/2)σx. However, in this case we can sum the power series in (16) in closed
form. The first few terms are

exp[−i(ω/2)σx] = I − i
(ω/2)

1!
σx − (ω/2)2

2!
(σx)

2 + i
(ω/2)3

3!
(σx)

3 + · · · . (24)

Now use the fact that (σx)
2 = I, so (σx)

3 = σx, and so forth. This allows one to rewrite the right side of
(24) as something times I plus something times σx, and one recognizes the power series for sine and cosine,
so

exp[−i(ω/2)σx] = cos(ω/2)I − i sin(ω/2)σx. (25)

2 Exercise. Use (25) to find what a rotation by π/2 around the x axis does to |x+〉 and |y+〉. Is it what
you expect?

2 Exercise. Use (25) and matrix multiplication to work out what a rotation of π/2 about the x axis does
to σy.

⋆ The same trick can be applied to obtain an explicit matrix R(~ω) for any ~ω. First write ~ω = ωn̂ for a
unit vector n̂ = (nx, ny, nz). Next define

σn̂ = n̂ · ~σ = nxσx + nyσy + nzσz. (26)

The rest can be left as an exercise.

2 Exercise. Write out σn̂ in (26) as a 2 × 2 matrix and evaluate its square by matrix multiplication.
Then use the same strategy employed for (24), and obtain R(~ω) as a 2 × 2 matrix. Check that the answer
is what you expect for ~ω along the z axis, and along the x axis.

⋆ Thinking of the Bloch sphere as a rigid object rotated (we are using active rotations) in three-
dimensional space is a very helpful way of visualizing the different possible unitary operations which are
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possible for spin half. Up to an overall phase, i.e., eiǫU in place of U , every unitary matrix on a 2-dimensional
(complex) Hilbert space can be thought of as a proper rotation of the Bloch sphere.

2 Exercise. Establish this result. [Hint. First find the most general form of a 2×2 unitary matrix. Then
compare with R(~ω) obtained in a previous exercise.]

• A proper rotation is one which does not involve any reflection. The transformation which in three
dimensions maps +x into +x, +y into +y, but z into −z is an example of an improper rotation. Any
improper rotation can be performed by first carrying out a parity operation, x → −x, x → −y, z → −z,
followed by a proper rotation.

5 Larger Values of Spin

5.1 Kets and angular momentum operators

⋆ A very elegant theory of angular momentum and rotations can be based upon the two VERY IM-
PORTANT FORMULAS of Sec. 3.1 along with one additional idea. The operator

J2 := J2
x + J2

y + J2
z , (27)

the square of the total angular momentum, has the property that it is Hermitian and commutes with all
three components of angular momentum:

[J2, Jx] = [J2, Jy] = [J2, Jz] = 0. (28)

2 Exercise. Check that (28) is a consequence of (13).

• This means that it is possible to simultaneously diagonalize J2 and one of the three components
Jx, Jy, Jz. The traditional choice is to diagonalize J2 and Jz. Thus one can find a basis of the Hilbert space
consisting of kets which are simultaneously eigenkets of J2 and Jz.

⋆ There is a very elegant algebraic approach, found in many textbooks, which uses nothing but the
commutation relations (13) in order to determine the possible values of the eigenvalues of J2 and Jz. Here
is a somewhat abbreviated presentation.

⋆ Define the raising and lowering operators—the reason for these names will appear shortly—

J+ := Jx + iJy, J− := Jx − iJy, (29)

• Note that J+ and J− are Hermitian conjugates of each other, J− = (J+)
†, J+ = (J−)

†.

• The following are immediate consequences of (13) and (27):

[Jz, J+] = J+, [Jz, J−] = −J−, (30)

J+J− = J2 − J2
z + Jz, J−J+ = J2 − J2

z − Jz. (31)

2 Exercise. Check that these are correct.

• It turns out in view of the following argument that the possible eigenvalues of J2 are of the form j(j+1)
where j is either a nonnegative integer or half integer, thus the possibilities are

j = 0, 1/2, 1, 3/2, 2, 5/2, . . . . (32)

Hence the possible eigenvalues of the operator J2 are 0, 3/4, 2, 15/4, . . ..

◦ Spin half means j = 1/2, and the eigenvalues of J2 = S2 = (σ2
x + σ2

y + σ2
z)/4 are indeed 1/2(1+ 1/2) =

3/4.

⋆ Consider a ket |j,m〉 which is simultaneously an eigenstate of J2 and Jz:

J2|j,m〉 = j(j +m)|j,m〉, Jz|j,m〉 = m|j,m〉, (33)

so we are labeling the ket with the eigenvalues of J2 and Jz, except that in place of j(j + 1) we use j as a
label.
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• Now consider the ket J+|j,m〉, and use (30) to show that

Jz
(

J+|j,m〉
)

= J+Jz|j,m〉+ [Jz, J+]|j,m〉 = J+
(

m|j,m〉+ |j,m〉
)

= (m+ 1)
(

J+|j,m〉
)

. (34)

◦ Conclusion: J+|j,m〉 is an eigenstate of Jz with eigenvalue m+1. Thus applying J+ has increased the
eigenvalue of Jz by 1, justifying the name “raising operator”.

◦ As for J2, it is fairly obvious that the J+|j,m〉 is an eigenvector with the same eigenvalue as |j,m〉,
namely j(j + 1).

2 Exercise. Or is it so obvious? Provide a short argument.

• What can be done once can be done twice, or as often as we like. Thus J2
+|j,m〉 will be an eigenstate of

Jz with eigenvalue m+2, J3
+|j,m〉 with eigenvalue m+3, and so forth, all with the same eigenvalue j(j+1)

of J2.

⋆ But something is wrong here. We cannot construct a state |j,m〉 with m as large as we want. In fact
we cannot construct a state with m >

√

j(j + 1), for the following reason. A simultaneous eigenstate of J2

and Jz is also an eigenstate of J2
x + J2

y ,

(

J2
x + J2

y

)

|j,m〉 =
(

J2 − J2
z

)

|j,m〉 =
(

j(j + 1)−m2
)

|j,m〉. (35)

But J2
x + J2

y is a positive operator and cannot have negative eigenvalues. Consequently

|m| ≤
√

j(j + 1). (36)

◦ That J2
x is a positive (nonnegative) operator follows from the fact that Jx is Hermitian with real

eigenvalues, and thus J2
x is Hermitian with positive (nonnegative) eigenvalues. The same for J2

y . That the
sum Q+R of two positive operators Q and R is positive follows from the fact that for any |ψ〉

〈ψ|Q+R|ψ〉 = 〈ψ|Q|ψ〉+ 〈ψ|R|ψ〉 ≥ 0. (37)

• What, then, is wrong with our argument that if we simply continue to apply J+ time after time we can
create states with the eigenvalue of Jz as large as we want? What is wrong is that an eigenvector must, by
definition, be nonzero.

◦ By contrast, an eigenvalue can very well be zero.

⋆ Let us assume that |j,m〉 is normalized. Applying J+ to it will yield another ket, which in general is
not normalized. Let us write

J+|j,m〉 = c|j,m+ 1〉. (38)

Then by assuming that both |j,m〉 and |j,m + 1〉 are normalized, we can compute c by equating the inner
products of the two sides of (38)

〈j,m|J−J+|j,m〉 = 〈j,m|
(

J2 − J2
z − Jz

)

|j,m〉 = j(j + 1)−m(m+ 1) = |c|2〈j,m+ 1|j,m+ 1〉 = |c|2, (39)

where we have used (31). This equation determines c up to a phase, and is customary to choose the phase
to be positive, and write (38) in the form

J+|j,m〉 =
√

j(j + 1)−m(m+ 1) |j,m+ 1〉. (40)

• Thus if m = j we have J+|j,m〉 = 0. It is this fact that prevents us from generating kets with
indefinitely large values of m. In fact, the fact that we cannot keep increasing m means that there must be

a value of m such that m = j.

⋆ In a similar way one can show that J− applied to a ket |j,m〉 yields a constant times a ket |j,m− 1〉,
or perhaps 0, and just as in (39) one can determine the absolute value of this constant. Choosing a positive
phase leads to

J−|j,m〉 =
√

j(j + 1)−m(m− 1) |j,m− 1〉. (41)

• Observe that in this case the right side vanishes for m = −j, and this fact will prevent the repeated
application of J− leading to values of m so negative that they violate (36).
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⋆ It is important to notice what we have just done. Starting with a single ket |j,m〉 which is an eigenket
of both J2 and Jz we have produced a cluster of 2j + 1 nonzero kets, with labels m = −j,−j + 1, . . . j,
orthogonal to one another, with the property that we can generate the entire cluster starting with just one,
any one, of these kets and applying suitable angular momentum operators a suitable number of times. The
set of all linear combinations of the kets in the cluster forms a 2j + 1-dimensional subspace of the Hilbert
space, which we will henceforth refer to as a “cluster space”.

◦ In the language of group theory we are dealing with an irreducible representation of the rotation group.

⋆ Using these 2j+1 orthonormal kets one can write down matrices for the operators Jx, Jy and Jz. The
usual choice is to order rows (descending) and columns (left to right) in the order of decreasing m.

• The matrix of Jz is diagonal, with 〈j, j|Jz|j, j〉 = +j in the upper left corner.

• The matrices for J+ and J− follow from (40) and (41):

〈j,m′|J+|j,m〉 =
√

j(j + 1)−m(m+ 1) δm′,m+1,

〈j,m′|J−|j,m〉 =
√

j(j + 1)−m(m− 1) δm′,m−1. (42)

• The matrices for Jx and Jy can be written in terms of those for J+ and J− by inverting (29)

Jx = (J+ + J−)/2, Jy = (J+ − J−)/2i (43)

⋆ In the case of j = 1/2, spin half, the kets | 12 ,+ 1
2 〉 and | 12 ,− 1

2 〉 are just the |z+〉 and |z−〉 states
encountered earlier, and the raising and lowering operators in this basis (using S in place of J) are:

S+ =

(

0 1
0 0

)

, S− =

(

0 0
1 0

)

. (44)

2 Exercise. Check that these matrices agree with the definitions S+ = Sx + iSy, S− = Sx − iSy, with
Sx and Sy defined in terms of the usual Pauli matrices.

2 Exercise. Show that (40) and (41) are correct for spin half.

2 Exercise. Work out the matrices for J+ and J− in the case j = 3/2.

5.2 Spin one

⋆ Here are eigenkets and operators for j = 1, spin one, where we use Sx, etc., in place of Jx, etc. Note
that the choice of phase for eigenkets is not unique. Matrices and column vectors use eigenvectors |m〉 of Sz

with m decreasing: the top row or first column corresponds to m = 1.

|z+〉 =





1
0
0



 , |z0〉 =





0
1
0



 , |z−〉 =





0
0
1



 ,

|x+〉 = 1

2





1√
2
1



 , |x0〉 = 1√
2





1
0
−1



 , |x−〉 = 1

2





1

−
√
2

1



 ,

|y+〉 = 1

2





1

i
√
2

−1



 , |y0〉 = 1√
2





1
0
1



 , |y−〉 = 1

2





1

−i
√
2

−1



 , (45)

Sz =





1 0 0
0 0 0
0 0 −1



 , Sx =
1√
2





0 1 0
1 0 1
0 1 0



 , Sy =
1√
2





0 −i 0
i 0 −i
0 i 0



 ,

S+ =
√
2





0 1 0
0 0 1
0 0 0



 , S− =
√
2





0 0 0
1 0 0
0 1 0



 . (46)
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2 Exercise. Check that the matrices for S+ and S− (J+ and J−) agree with (40) and (41), respectively

2 Exercise. Check that [Sx, Sy] = iSz by multiplying out the matrices.

• Consider a rotation about the z axis. From (46) we see that

R(ωẑ) = e−iωSz =





e−iω 0 0
0 1 0
0 0 eiω



 (47)

If we set ω = π/2 and apply this to |x+〉, (45), the result is −i |y+〉, a phase times |y+〉, which is what we
might expect.

2 Exercise. What might you expect R(ωẑ)SxR(−ωẑ) to be equal to? Multiply out the matrices and see
if you’re right.

2 Exercise. What are the eigenvalues of R(ωŷ)? A physicist’s answer (plausible but not a proof) will
suffice.

2 Exercise. In the case of spin half the projectors onto m = 1/2 and m = −1/2 can be written as
[z+] = Sz + I/2; [z−] = −Sz + I/2. Can you find a comparable formula for [z+], [z0], [z−] for spin 1? You
may need to use S2

z in addition to Sz.

6 Hamiltonian Invariant Under Rotations

⋆ An important application of the theory of quantum angular momentum is in classifying the energy
eigenstates of systems for which the Hamiltonian H is invariant under rotations, that is, H commutes with
all the rotation operators:

[Jx, H] = 0 = [Jy, H] = [Jz, H]. (48)

• A consequence of (48) is that

R(~ω)HR†(~ω) = R(~ω)HR(−~ω) = e−i~ω· ~JHe+i~ω· ~J = H, (49)

for any ~ω, that is, H is left unchanged by any rotation.

2 Exercise. Prove (49) is a consequence of (48). [Hint. Consider a particular choice of ~ω. Show that

~ω · ~J is a Hermitian operator that commutes with H. Hence one can find an orthonormal basis in which
both are diagonal. Write out the matrices involved in (49) in this basis and check the final equality.]

⋆ Because an invariant H commutes with J2 and Jz, there is an orthonormal basis of the Hilbert space
in which all three Hermitian operators are diagonal.

• In particular this means the following. Let {Pk} be the decomposition of the identity associated with
H in the sense that

H =
∑

k

ǫkPk; ǫk 6= ǫk′ for k 6= k′, (50)

i.e., Pk projects onto the eigenspace Pk of H associated with energy eigenvalue ǫk. Then it is possible to
choose an orthonormal basis of the subspace Pk consisting of simultaneous eigenkets of J2 and Jz.

• Let |j,m〉 be one of these eigenkets, using the notation of Sec. 5.1. Then we know that it belongs to a
cluster of 2j+1 kets which are produced from it by successive applications of J+ and/or J−. All of the kets
in this cluster must have the same energy, because H commutes with the angular momentum operators.

◦ So the dimension dk = Tr(Pk) of the subspace Pk cannot be less than 2j +1 if there is at least one ket
present which is an eigenstate of J2 with eigenvalue j(j + 1).

◦ Of course dk could be larger, as there might be kets corresponding to two different values of j in
this energy eigenspace. Or there could be two linearly-independent clusters having the same j, assuming
dk ≥ 2(2j + 1).

⋆ There is a very interesting folk theorem that says that there is always only one cluster present,
corresponding to a single specific value of j, in any give energy eigenspace, i.e., in any Pk.

◦ Thus if, for example, dk = 3, then j = 1 for this k.
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• A folk theorem is one that is true in all instances except those in which it is false. This particular folk
theorem works very well in that experiments indicate that it holds for a large number of situations in both
atomic and nuclear physics.

◦ A glaring exception to the folk theorem is the nonrelativistic hydrogen atom, the energy spectrum of
which is worked out in many textbooks. Except for the ground state, the energy eigenspaces are bigger
than what the folk theorem would lead one to expect. (As for the real, relativistic hydrogen atom. . . . The
discussion lies outside the scope of these notes.)

⋆ Readers may have encountered the somewhat crazy notation used in atomic physics whereby a given
energy level might carry the label 2P3/2. Each of the three symbols, 2, P, and 3/2, has something to do with
angular momentum. For the full explanation the reader should look at a book on atomic physics. For present
purposes we note that the final subscript 3/2 denotes the j value: the level is 2j + 1 = 4-fold degenerate,
i.e., the dimension of this subspace of the Hilbert space is 4, and the different states are mapped into linear
combinations of one another when one rotates the atom.
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