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1 Introduction

• Classical (ordinary) probability theory. This is treated in a large number of texts. Helpful
treatments of the material needed for quantum mechanics will be found in:

Feller: Introduction, Ch. I, Ch. V
DeGroot and Schervish, Ch. 1 and Secs. 2.1, 2.2, 2.3, 3.1, 3.5, 4.1, 4.2.

• For the corresponding quantum formulation, see CQT Ch. 5. The material is not readily
accessible elsewhere, and the treatment in quantum textbooks is inadequate.

⋆ Probabilities play an essential role in quantum dynamics, as was first pointed out in 1926 by
Born.

• The rules for manipulating probabilities and forming probabilistic inferences are the same
in quantum as in classical physics provided attention is paid to incompatible quantum properties.
This requires that one be careful to observe certain rules which, while also present in the classical
case, can be easily overlooked in the quantum situation, leading to problems and paradoxes.

⋆ The traditional approach in quantum textbooks is to employ measurements as a tool for in-
troducing probabilities. This approach is not wrong, but it is inadequate. It suffices for formulating
rules of calculation which give the right answer when used in the right way, but they have given
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rise to a lot of confusion. This approach is also inconsistent in the sense that it does not provide a
way of describing real measuring apparatus in quantum terms.

• One of the confusions produced by the traditional approach: shall we first sum (amplitudes)
and then square (to get probabilities), or shall we first square and then sum?

◦ Here are some quotes from a modern textbook:1

“If the apparatus permits us in principle to determine which of the two slits a neutron passes
through, the interference will be destroyed independently of whether we actually bother to deter-
mine which slit it was”

“In summary, we must sum the amplitudes for identical final states and the probabilities for
different final states, even if these final states differ only by physical parameters other than those
of interest. It is sufficient that these other parameters be accessible in principle, even if they are
not actually observed, for us to consider the final states as being different.”

◦ If you already know what the author is trying to say, you can figure out what he means, but
it is otherwise rather difficult. A better strategy is to employ a precise formulation of quantum
principles, and then apply it to various examples.

2 Sample Space, Event Algebra, Probabilities

⋆ Probabilities, whether quantum or classical, are formulated in terms of three things: a sample

space S, an event algebra E , and a probability distribution P. One sometimes speaks of the triple
(S, E ,P).

• References: CQT Sec. 5.1 is quite short. For more details see Feller, or DeGroot and Schervish,
or other textbooks on probabilities

2.1 Classical

⋆ An ordinary or “classical” sample space S consists of a set of mutually exclusive possibilities,
one and only one of which is true in a given circumstance or a given realization of an experiment.

◦ Example. A die (singular of dice) is rolled. The number of spots s is one of the six possibilities
{1, 2, 3, 4, 5, 6}. In any given case one and only one of these appears.

⋆ The event algebra E is a collection of certain subsets of elements of the sample space S which
form a Boolean algebra: closed under complements, intersections, unions. It always includes S and
the empty set ∅.

◦ The complement Ac of A ⊂ S is all elements of S not in A.

• Simplest situation to think about: S is finite, or at most countably infinite, and E consists
of all subsets of S, including S itself and the empty set ∅. Sometimes it is convenient to choose a
smaller collection of subsets.

◦ For the die: The event algebra contains 26 = 64 subsets of S = {1, 2, 3, 4, 5, 6} if one includes
S and the empty set ∅. Another possibility: E consists of the four subsets: ∅, {1, 3, 5}, {2, 4, 6}, S.
That is, one is only concerned with whether the number of spots is even or odd.

2 Exercise. Check that these four subsets of S form a Boolean algebra.

⋆ Probabilities P: One assigns real numbers between 0 and 1 to the elements E following
certain rules.

• Simplest situation, which will work for most of what we want to do. Let S be finite or at
most countably infinite; E consists of all subsets of S. Then for each s ∈ S let ps be a nonnegative

1M. Le Bellac, Quantum Physics (Cambridge, 2006). The quotations are from pp. 22 and 23.
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real number, and choose these numbers such that
∑

s

ps = 1. (1)

• Then for any E ⊂ S define its probability as

Pr(E) =
∑

s∈E

ps (2)

• Important! Probability theory as such does not assign a probability distribution. It merely
specifies the rules when such a distribution is given.

◦ In the case of a die there is nothing that says ps = 1/6 for each s between 1 and 6; there are
plenty of other possibilities. And some of these probably provide a better description of some of
the dice that have shown up in Las Vegas. . . .

• Probabilities enter science as parameters in various models, and there is no “law of nature”
that prescribes their values. There has been a lot of discussion of how to assign probabilities.

◦ Quantum theory is somewhat exceptional in that there are certain cases (to be discussed
later) in which some probabilities enter the theory as axioms, and in this sense certain probabilities
emerge from “laws of nature.”

2.2 Quantum

⋆ A quantum sample space S is always a (projective) decomposition of the identity operator I
for an appropriate quantum Hilbert space: a collection of projectors {Pj} which sum to I.

• The simplest situation is that of an orthonormal basis {|bj〉} with Pj = [bj ] = |bj〉〈bj |.
◦ It is convenient to employ the abbreviation [ψ] for the projector |ψ〉〈ψ| onto the ray corre-

sponding to the normalized ket |ψ〉.
• Example. Spin half. {[z+], [z−]}
• The fact that PjPk = 0 for j 6= k means that the properties corresponding to the different

projectors in the decomposition are mutually exclusive; only one of them can be true in any given
situation or realization of an experiment. The fact that the projectors sum to I means that one of
them is true, since I is the property that is always true.

◦ Side remark. A “classical” object such as a die can in principle be described in quantum
mechanical terms, and then the different possibilities when it has been tossed, different numbers
of spots, correspond to orthogonal projectors on an appropriate Hilbert space. Their adding up
to the identity is more subtle: they sum to a big projector whose physical significance is that all
reasonable possibilities are included: the die is on top of the table, it has not melted, etc. In this
sense classical probability theory follows the quantum rules, as one would expect if the universe is
fully quantum mechanical.

⋆ Given S, we shall employ an event algebra E consisting of all projectors of the form

P =
∑

j

πjPj , (3)

where each πj is either 0 or 1. Thus if there are n projectors in the decomposition S there are 2n

projectors in the event algebra E .
2 Exercise. Show that if P is a projector in E , then its complement I −P is in E , and if P and

Q are two projectors in E , so is their product PQ = QP . With these operations E is a Boolean
algebra.
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⋆ Two quantum sample spaces S = {Pj} and T = {Qk} for the same system (the same Hilbert
space) are compatible if PjQk = QkPj for every j and k; otherwise they are incompatible.

◦ Example: The sample spaces S = {[z+], [z−]} and T = {[x+], [x−]} for a spin-half particle
are incompatible.

• In the compatible case one can always form a third sample space R = {Rl} (which might be
identical to either S = {Pj} or T = {Qk}) by using the decomposition of the identity consisting of
all products PjQk, throwing away any duplicates and also all products that are 0. One calls R the
coarsest common refinement of S and T . The event algebra corresponding to R contains all the
projectors in both of the event algebras generated by S and T , along with (in general) others as
well.

2 Exercise. Show that if S 6= T refer to spin half (a two-dimensional Hilbert space), they will
typically be incompatible with each other.

2 Exercise. Construct a simple example of two nontrivial, compatible sample spaces S 6= T on
a three-dimensional Hilbert space, and find the largest common refinement R. (A trivial sample
space is the trivial decomposition consisting of nothing but I.)

• The incompatible case arises in quantum, but not classical, mechanics, and here the single-
framework rule kicks in: Do not try and combine results for incompatible quantum sample spaces.
Trying to do so leads to paradoxes.

⋆ Once a sample space and the corresponding event algebra have been specified, as in Sec. 2,
quantum probabilities behave in the same way as classical probabilities. The tricky issue is how to
choose the sample space, and the issue of combining or not combining samples spaces. But if one
has a single sample space and uses its corresponding event algebra there will be no problems.

• In particular, to each projector Pj in the decomposition one assigns a non-negative probability
pj in such a way that

∑

j pj = 1. To a projector of the form (3) assign a probability

Pr(P ) =
∑

πjpj . (4)

• Just as in ordinary or classical probabilities, there is no general rule for assigning probabilities
to a quantum sample space or the corresponding event algebra, though in some situations (which
we will discuss later) the Born rule and its generalizations specify some aspects of how to do it.

3 Random and Physical Variables

3.1 Classical

⋆ In ordinary “classical” probability theory a random variable V is a real-valued function V (s)
defined on the sample space S.

⋆ A particular case is that of the indicator function of the set E ⊂ S, which can be (fairly
safely) denoted by the same symbol E, the function defined by

E(s) =

{

1 if s ∈ E,

0 if s /∈ E.
(5)

• If the set E consists of the single point s = r, i.e., E = {r}, we shall use the special notation
Jr(s) for the corresponding indicator function:

Jr(s) = δrs =

{

1 if s = r,

0 if s 6= r.
(6)
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• Assuming that S is finite or at most countably infinite, any random variable can be written
as a sum of indicators multiplied by function values, in two slightly different ways:

V (s) =
∑

r

vrJr(s) =
∑

j

v′jPj(s). (7)

Here vr = V (r) is just the value which V (s) takes when s = r. The second sum is over all the
distinct values v′j that V (s) can take, with j some appropriate index or label, and

Pj(s) =

{

1 if V (s) = v′j ,

0 if V (s) 6= v′j .
(8)

is the indicator of the set of all s where V (s) takes on the particular value v′j .

2 Exercise. Work this out in the case in which S = {1, 2, 3} and V (1) = 1, V (2) = 2, and
V (3) = 2.

⋆ The probability that V (s) takes on the value v is given by

Pr(V = v) = Pr(Pj) = 〈Pj〉 (9)

when v′j = v; 〈〉 is defined next.

⋆ A very important concept is that of the average of a random variable V , also called its
expectation or expectation value:

〈V 〉 =
∑

s

psV (s). (10)

◦ If S is infinite the average may not be defined; we restrict our considerations to cases in which
it is defined (i.e., the sum is absolutely convergent).

• The average value of an indicator function E(s) is equal to the probability of the corresponding
set or event E:

〈E〉 = Pr(E) =
∑

s∈E

ps. (11)

2 Exercise. Verify this

⋆ The variance of V is

Var(V ) = (∆V )2 = 〈V 2〉 − (〈V 〉)2 = 〈V 2 − 〈V 〉)2〉, (12)

and the positive square root ∆V of the variance is known as the standard variation. This is useful
for indicating the “width” of the probability distribution. Note that ∆V has the same dimensions
as V when the latter is a dimensioned quantity (e.g., energy).

⋆ In classical mechanics, physical variables such as energy, and the different components of
position, momentum, and angular momentum are examples of real valued functions on the phase
space, and we shall call them physical variables, in contrast to physical properties, a term which is
used here for subsets of the phase space. If, as in (classical) statistical mechanics, the phase space
is regarded as a sample space, then physical variables are examples of random variables of the form
used in probability theory.

• The phase space consists of an uncountably infinite number of points, and this leads to various
technical complications. One way of getting around them is to imagine that the phase space has
been coarse grained by dividing it up into a countable collection of cells of equal size, or even a
finite collection of cells if one lets some of the cells be of infinite size. This sometimes provides a
more helpful analogy with quantum theory than does a continuous phase space.
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3.2 Quantum

⋆ In quantum theory the counterpart of a random variable or a classical physical variable is
a Hermitian operator V that assigns a real number to every element of a decomposition of the
identity S = {Pj} in the sense that

V =
∑

j

v′jPj , (13)

where we assume that the eigenvalues on the right side are distinct: v′j 6= v′k for j 6= k.

◦ One could, of course, use some refinement of {Pj} and rewrite V in terms of a sum over
these projectors, in which case the same eigenvalue would (in general) appear more than once. For
example,

V =
∑

k

vk[bk] =
∑

k

vk|bk〉〈bk|, (14)

where {|bk〉} is an orthonormal basis of the Hilbert space composed of eigenkets of V .

• Since the vj are, by assumption, real, V = V † is a Hermitian operator. Similarly, any
Hermitian operator V , which is to say the operator for any quantum physical variable, can be
written in the form (13) or (14), where the coefficients on the right side of the equation are its
eigenvalues.

– In quantum theory a physical variable is often referred to as an observable. This is a convenient
technical term if one ignores its historical origin in an outdated theory of measurements.

⋆ There is a unique decomposition of the identity associated with a physical variable V such
that the expansion (13) contains only one term for each distinct eigenvalue. We shall say that this
is the decomposition or sample space corresponding to or generated by the operator in question.

◦ If some of the projectors are of rank (trace) greater than 1, then there will also exist an
alternative way of writing V using a finer decomposition of the identity, as in (14).

• In particular, Pj in (13), or the subspace onto which it projects, corresponds to the property
that V takes on the value v′j , in much the same way as the subset of the classical sample space
for which Pj(s) in (8) is the indicator function consists of and contains all the points where the
random variable V (s) takes on the value v′j in (7).

⋆ One says that a quantum physical variable or observable V takes on or has the value v in
the quantum state |ψ〉 provided |ψ〉 is an eigenstate of V with eigenvalue v, i.e.,

V |ψ〉 = v|ψ〉, (15)

which is so if and only if |ψ〉 lies in the corresponding subspace Pj , (13), for which v
′
j = v

• The probability that V takes on the value v is the probability assigned to the corresponding
subspace of the Hilbert space, or its projector:

Pr(V = v′j) = Pr(Pj) = pj . (16)

– While the notation V = v′j , equating an operator to a scalar, may seem a bit odd, its
significance should be clear in view of the preceding discussion.

⋆ The average value of V is then

〈V 〉 =
∑

j

v′jpj . (17)

• This same average can also be written in the alternative form

〈V 〉 = Tr(ρV ), (18)
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where
ρ =

∑

j

pjPj/Tr(Pj) (19)

is a positive operator of trace equal to 1, thus a density operator.

◦ Note that ρ and V commute, since they are written as sums of projectors from the same
decomposition of the identity. We will later encounter cases in which ρ and V do not commute,
and this will require a separate discussion.

⋆ The variance ∆V 2 and the standard deviation ∆V are defined in the quantum case using
(12), just as in the case of a classical random variable.

4 Several Random (Physical) Variables

4.1 Classical

• One often makes use of several random variables, which is to say several real-valued functions
on the same sample space S, again assumed to be finite or at most countably infinite. The essential
ideas can be illustrated by by considering two random variables V (s) and W (s).

⋆ The joint probability distribution for V and W , Pr(V = v,W = w) or Pr(v, w) for short, is
defined to be

Pr(v, w) = 〈EF 〉 =
∑

s∈E∩F

ps, (20)

where E is the subset of S where V (s) = v, or its indicator, and F the set (indicator) where
W (s) = w, and the product EF is the random variable E(s)F (s), the indicator for the intersection
E ∩ F , where it should cause no confusion if we use the same symbol for a subset of S and for its
indicator function. Read (v, w) or (V = v,W = w) as “V = v AND W = w.”

• Note how the “marginal” distribution Pr(V = v) defined earlier in (9), and its counterpart
for W , can be obtained from the joint distribution:

Pr(V = v) =
∑

w

Pr(v, w); Pr(W = w) =
∑

v

Pr(v, w) (21)

◦ Since we are dealing with a sample space that is at most countable, the possible values of V
and W are discrete, and the sums in (21) have an obvious meaning. When the sample space is
continuous (outside the scope of these notes) one may have to replace sums with integrals.

⋆ Conditional probabilities.

• Let A and B denote any two subsets of the sample space S. Provided Pr(B) > 0, define the
conditional probability of A given B by

Pr(A |B) = Pr(A ∩B)/Pr(B) = Pr(A,B)/Pr(B), (22)

where either Pr(A,B) or Pr(A∩B) is the probability of A AND B, the probability of the intersection
of the corresponding subsets of S. This can also be written as Pr(AB) if one thinks of A and B as
the corresponding indicators.

– If Pr(B) = 0 the conditional Pr(A |B) is undefined. This is a technical annoyance which the
reader should be aware of (and we will not emphasize further). In some sense is of no practical
significance, since an event B with zero probability occurs with zero probability (i.e., never).

• One can also write (22) in the equivalent form

Pr(A,B) = Pr(A |B) Pr(B). (23)
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◦ It is worthwhile memorizing both (22) and (23).

• Conditional probabilities for two random variables V and W :

Pr(v |w) = Pr(V = v |W = w) = Pr(v, w)/Pr(w), or Pr(v, w) = Pr(v |w) Pr(w). (24)

⋆ Conditional probabilities play a fundamental role in probabilistic reasoning. So it is impor-
tant to learn to use them properly and effectively.

• As a function of its first argument, with second argument fixed, a conditional probability
behaves like any other probability.

◦ For example,
∑

v Pr(v |w) = 1.

2 Exercise. Show that if we define

p̄s := Pr(s |B) (25)

then
Pr(A |B) =

∑

s∈A

p̄s (26)

◦ Case of a die. Let us assume it is honest, it has just been rolled, and you have not seen it.
So you don’t know the value of s, and you assume a probability 1/6 for each outcome.

– Now you are told that the number of spots is even. Given that information, you revise your
probability distribution: you now assign a probability of 0 to s = 1, 3, and 5; and 1/3 to s = 2, 4,
and 6.

2 Exercise. Show that these new probabilities are those in (25) if B is the subset “s is even.”

• Think of the condition probability Pr(A |B) as obtained by setting to zero the probabilities
for all s that are outside B. Then multiply each ps for s ∈ B by the same amount, 1/Pr(B), to
obtain a new probability distribution

⋆ Two events A and B are said to be statistically independent provided

Pr(A,B) = Pr(A) Pr(B) or Pr(A |B) = Pr(A) or Pr(B |A) = Pr(B). (27)

2 Exercise. Show that each equality in (27) implies the other two (assuming that the conditional
probabilities exist, i.e., Pr(A) > 0, Pr(AB > 0).

◦ While each equality in (27) implies the other, it is worthwhile memorizing both the first and
the second, as the intuitive notions are a bit different.

• Two random variables V and W are said to be statistically independent provided

Pr(v, w) = Pr(v) Pr(w) (28)

for every possible v and w.

2 Exercise. Suppose both V and W take on only two values, 0 or 1, i.e., they are indicators.
It then looks as if checking (28) means checking four independent conditions. Show that checking
one of them suffices; the other three will then follow. Can you relate this to (27)?

• One can think of independent random variables in the following way. Additional information
will typically allow you to update a probability distribution to something that is more precise or
informative. (See above example of rolling a die where you are told that the number of spots is
even.) However, there are cases in which additional information tells you nothing at all about some
event or random variable you happen to be interested in.
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◦ Example using an honest die: let A be “s > 3” and B be “s = 1 or 6”.

2 Exercise. Work it out assuming ps = 1/6 independent of s. But what about some other
probability distribution? Give an example with ps 6= 1/6 for which A and B are statistically
independent, and another example where they are not statistically independent.

⋆ The extension of these ideas to three or more events or random variables is fairly straight-
forward, so we won’t give details.

• For example, let U , V , and W be three random variables. Statistical independence is then
the requirement

Pr(u, v, w) = Pr(u) Pr(v) Pr(w) (29)

in an obvious notation.

◦ Also,

Pr(v, w) =
∑

u

Pr(u, v, w) (30)

Pr(v, w |u) = Pr(u, v, w)/Pr(u), (31)

assuming Pr(u) > 0.

4.2 Quantum

⋆ In quantum theory the situation with two or more physical variables or observables is precisely
the same, or at least closely analogous, to that in ordinary probability theory as long as the operators

commute. When they do not commute the single framework rules forbids combining them.

• Simultaneous diagonalization. If {V,W,X, . . . } are a collection of commuting normal oper-
ators, VW = WV and so forth for all pairs, then they can be simultaneously diagonalized using
the same orthonormal basis. That is, there is an orthonormal basis such that each basis ket is an
eigenket of each of the operators.

• This basis corresponds to a decomposition of the identity using projectors of rank 1. Some-
times it is possible to use a coarser decomposition if one has some collection of basis kets such that
each operator in the collection assigns the same eigenvalue to each of these kets. Then one can
replace the individual dyads with a projector onto the space they span.

◦ There is always a coarsest decomposition of the identity {Pj} such that all the commuting
operators can be written in terms of projectors from this set.

• If somehow probabilities pj have been assigned to each Pj , with (of course) sum equal to 1,
the situation is just like the classical case: there is a joint probability distribution, which then leads
to conditional probabilities of the usual sort, which can be interpreted in the usual way.

◦ Statistical independence is defined in the obvious way.

⋆ If, on the other hand, V and W are two Hermitian operators that do not commute, they
are incompatible observables (physical variables). and discussions of their probabilities have to be
carried out in separate frameworks, and cannot be combined.

• However, the situation illustrated by the following example sometimes arises:

V = v1P1 + v2P2 + v3P3, W = w1P1 + w2Q2 + w3Q3, (32)

where {P1, P2, P3} and {P1, Q2, Q3} are incompatible decompositions of the identity because while
P2 + P3 = Q2 +Q3, P2Q2 6= Q2P2, etc.

◦ If one then adopts a decomposition {P1, I − P1} of the identity with just two projectors this
can form a sample space which, while not as fine grained as one would like, allows one speak sensibly
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and simultaneously (i.e., using a single framework) about the events V = v1, V 6= v1, W = w1, and
W 6= w1, where by “V 6= v1” one means what is represented by the projector I − P1, and not that
“it is either the case that V = v2 or else it is the case that V = v3”, which would then require that
P2 and P3 both belong to the framework.

5 Born Rule

5.1 Pre-probabilities

⋆ There is a uniquely quantum mechanical way of assigning probabilities, with no classical
analog, known as the Born rule. We introduce it here simply as a calculational device. Later on we
will see it should be applied in various physical situations, in particular involving time development.
The connection between the Born rule and a certain class of idealized measurements is discussed
in Sec. 5.2.

⋆ Let |ψ〉 be a normalized ket, 〈ψ|ψ〉 = 1. We shall call it a pre-probability when it is used to
generate a set of probabilities pj for the elements Pj of a quantum sample space or decomposition
of the identity {Pj}, see Sec. 2.2, using the formula

pj = 〈ψ|Pj |ψ〉 = Tr([ψ]Pj). (33)

2 Exercise. Why are these pj nonnegative, and why do they sum to 1?

• In particular, if the sample space is associated with an orthonormal basis {|bj〉}, the Born
rule assigns probability a

pj = |〈bj |ψ〉|2 = |〈ψ|bj〉|2 = Tr([ψ][bj ]) (34)

to the property [bj ] corresponding to |bj〉 (i.e., to the ray which contains the ket |bj〉.
◦ If |ψ〉 is not normalized it can still be used as a pre-probability; simply replace it with

|ψ̄〉 = |ψ〉/
√

〈ψ|ψ〉 in (33) or (34).

⋆ A density operator ρ, a positive operator with trace equal to 1, can also serve as a pre-
probability, in which case (33) is to be replaced with

pj = Tr(ρPj). (35)

• Note that the projector [ψ] is a positive operator with trace 1, and hence a special kind of
density operator. In that case (35) is obviously identical to the right side of (33).

⋆ It is important to distinguish a pre-probability from a quantum property. In the simplest
situation both are represented by kets, so it is easy to confuse them. The fundamental difference is
that a property is something real, whereas a pre-probability, which is used to generate probabilities,
is no more real than a probability as used in classical physics. It is a mathematical abstraction.

◦ To be sure, a vector in the Hilbert space is itself a mathematical abstraction, not a physical
reality. It can, however, represent a physical property in much the same way that three numbers
in an appropriate coordinate system can represent the present position of the center of mass of the
planet Jupiter. A probability cannot correspond to a physical property in the same way (unless
the probability is 0 or 1, in which case it becomes a certainty).

⋆ Example. Let |ψ〉 = |x+〉 be the pre-probability, and {|z+〉, |z−〉} the sample space. Then
since |〈x+|z+〉| = |〈x+|z−〉| = 1/

√
2, we conclude that Pr(z+) = Pr(z−) = 1/2.

• If, on the other hand, we use the same pre-probability |ψ〉 = |x+〉 but a different sample space
{|x+〉, |x−〉}, then Pr(x+) = 1, Pr(x−) = 0.
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!! Beware! Since the same pre-probability is used in the two instances just discussed, one may
be tempted to combine the results and say that: “the probability to x+ is 1, the probabilities of z+

and z− are 1/2, and the probability of x− is 0.” The trouble with this statement is that it suggests
that [x+], [z+], [z−], and [x−] are all elements of a single event algebra, and one is comparing them
using a common probability distribution. But [x+] and [z+] are incompatible (in the quantum
sense), and it makes no sense to compare their probabilities.

5.2 Measurements

⋆ The Born rule is often stated in quantum textbooks in the following way, where to make it
definite we consider the case of a spin half particle. Suppose that the normalized quantum state is
|ψ〉. The textbook might say:

M. “If Sz is measured the probability of finding Sz = 1/2 (in units of ~) is |〈z+|ψ〉|2, and the
probability of finding Sz = −1/2 is |〈z−|ψ〉|2.”

• This can be interpreted in the following way. Mentioning a particular quantum observable
or physical variable, in this case Sz, implicitly defines a decomposition of the identity in terms of
projectors onto its eigenspaces, as in (13). In the case at hand that decomposition is {[z+], [z−]}
corresponding to the orthonormal basis {|z+〉, |z−〉}. Next comes the notion of an ideal measure-

ment in which the measurement outcome is indicated on the measuring instrument by clearly
distinguished macroscopic (“classical”) states of affairs. In a tradition that goes back much earlier
than modern electronics one speaks of the different outcomes as distinct positions of a pointer. An
ideal measurement is one in which the apparatus pointer position accurately reflects the state of
affairs that existed just before the measurement was carried out. The probabilities referred to in M
are, strictly speaking, the probabilities that the measurement pointer will be in one position or the
other. However, in an ideal measurement the probabilities for the pointer positions are the same
as the probabilities of the properties the instrument was designed to measure. So we end up in the
end with probabilities of certain quantum properties.

⋆ There are two reasons for this strange circumlocution with its reference to “measurements”.

• The first is tradition: the textbook writer learned quantum mechanics from a previous book
written by someone who learned quantum mechanics from a previous book written by . . . by John
von Neumann with the title Mathematische Grundlagen der Quantenmechanik. Von Neumann was
a bit confused about this aspect of quantum theory, and his confusion has been passed down to his
intellectual grandchildren.

• Second, measurements are being used to cover up conceptual difficulties of the quantum world.
Hilbert space quantum mechanics allows one to speak in a sensible way about Sx for a spin half
particle, or about Sz, or any other component, but combining descriptions of angular momentum
components referring to different directions in space is not possible. Rather than facing up to this
difficulty directly, what textbooks state is that there is impossible to simultaneously measure both
Sx and Sz for a spin half particle.

• This statement, that Sx and Sz cannot be simultaneously measured, is correct. What text-
books omit is the explanation: what does not exist cannot be measured! There just is nothing in
the quantum Hilbert space of a spin half particle that could represent the particle having both a
value (necessarily ±1/2) of Sx and a value of Sz. Even very competent experimentalists cannot
measure what is not there! (Indeed, this is one thing that distinguishes them from less competent
colleagues.)

• Later on we will discuss the measurement process, using a simplified but fully consistent
quantum mechanical description that includes the apparatus as well as the measured system.

⋆ Until then, the reader should interpret textbook references to “measurement” as a way of
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identifying a quantum sample space:

◦ Textbook statement: “Given that the quantum state is |ψ〉, what is the probability that the
measurement of Sz will yield the value of +1/2?”

◦ Translation: “Given the quantum state |ψ〉 understood as a pre-probability, and that Sz =
([z+] − [z−])/2 so the sample space consists of [z+] and [z−] (the projectors onto the eigenstates
|z+〉 and |z−〉 of Sz), what is the probability of |z+〉?”
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