
qmd113

Hilbert Space Quantum Mechanics

Robert B. Griffiths
Version of 27 August 2012

Contents

1 Vectors (Kets) 1
1.1 Dirac notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Qubit or spin half . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Intuitive picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 General d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Kets as physical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Operators 5
2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Dyads and completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Dagger or adjoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Hermitian operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Projectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.7 Positive operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.8 Unitary operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.9 Normal operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.10 Decomposition of the identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

References:
CQT = Consistent Quantum Theory by Griffiths (Cambridge, 2002). See in particular Ch. 2; Ch. 3;

Ch. 4 except for Sec. 4.3.

1 Vectors (Kets)

1.1 Dirac notation

⋆ In quantum mechanics the state of a physical system is represented by a vector in a Hilbert space: a
complex vector space with an inner product.

◦ The term “Hilbert space” is often reserved for an infinite-dimensional inner product space having the
property that it is complete or closed. However, the term is often used nowadays, as in these notes, in a way
that includes finite-dimensional spaces, which automatically satisfy the condition of completeness.

⋆ We will use Dirac notation in which the vectors in the space are denoted by |v〉, called a ket, where v
is some symbol which identifies the vector.

One could equally well use something like ~v or v. A multiple of a vector by a complex number c is written
as c|v〉—think of it as analogous to c~v of cv.

⋆ In Dirac notation the inner product of the vectors |v〉 with |w〉 is written 〈v|w〉. This resembles the
ordinary dot product ~v · ~w except that one takes a complex conjugate of the vector on the left, thus think of
~v∗ · ~w.
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1.2 Qubit or spin half

⋆ The simplest interesting space of this sort is two-dimensional, which means that every vector in it can
be written as a linear combination of two vectors which form a basis for the space. In quantum information
the standard (or computational) basis vectors are denoted |0〉 and |1〉, and it is assumed that both of them
are normalized and that they are mutually orthogonal

〈0|0〉 = 1 = 〈1|1〉, 〈0|1〉 = 0 = 〈1|0〉. (1)

(Note that 〈v|w〉 = 〈w|v〉∗, so 〈0|1〉 = 0 suffices.)

• The notation |0〉 and |1〉 is intended to suggest an analogy, which turns out to be very useful, with
an ordinary bit (binary digit) that takes the value 0 or 1. In quantum information such a two-dimensional
Hilbert space, or the system it represents, is referred to as a qubit (pronounced “cubit”). However, there are
disanalogies as well. Linear combinations like 0.3|0〉+0.7i|1〉 make perfectly good sense in the Hilbert space,
and have a respectable physical interpretation, but there is nothing analogous for the two possible states 0
and 1 of an ordinary bit.

⋆ In the quantum mechanics of atoms a two-dimensional complex Hilbert space H is used for describing
the angular momentum or “spin” of a spin-half particle (electron, proton, neutron, silver atom), which then
provides a physical representation of a qubit.

• A state or vector |v〉 says something about one component of the spin of the spin half particle. The
usual convention is:

Sz = +1/2 ↔ |z+〉 = |0〉, Sz = −1/2 ↔ |z−〉 = |1〉 (2)

where Sz, the z component of angular momentum is measured in units of ~. Some other correspondences:

Sx = +1/2 ↔ |x+〉 = (|0〉+ |1〉)/
√
2, Sx = −1/2 ↔ |x−〉 = (|0〉 − |1〉)/

√
2,

Sy = +1/2 ↔ |y+〉 = (|0〉+ i|1〉)/
√
2, Sy = −1/2 ↔ |y−〉 = (|0〉 − i|1〉)/

√
2, (3)

and in general, if w is a direction in space corresponding to the angles θ and φ in polar coordinates,

|w+〉 = cos(θ/2)|z+〉+ eiφ sin(θ/2)|z−〉, |w−〉 = sin(θ/2)|z+〉 − eiφ cos(θ/2)|z−〉. (4)

◦ The convention used in (3) and (4) is common but not universal. In particular, even if one supposes
that the kets |w+〉 and |w−〉 are normalized, they can be multiplied by an arbitrary phase, a complex number
of magnitude 1, without changing their physical significance. Thus, for example, a different convention for
phases is employed in CQT Eq. (4.14). See comments in Sec. 1.5 below.

1.3 Intuitive picture

⋆ Physics consists of more than mathematics: along with mathematical symbols one always has a
“physical picture,” some sort of intuitive idea or geometrical construction which aids in thinking about what
is going on in more approximate and informal terms than is possible using “bare” mathematics.

⋆ Most physicists think of a spin-half particle as something like a little top or gyroscope which is spinning
about some axis with a well-defined direction in space, the direction of the angular momentum vector.

• This physical picture is often very helpful, but there are circumstances in which it can mislead, as can
any attempt to visualize the quantum world in terms of our everyday experience. So one should be aware of
its limitations.

• In particular, the axis of a gyroscope has a very precise direction in space, which is what makes such
objects useful. But thinking of the spin of a spin-half particle as having a precise direction can mislead. A
better (but by no means exact) physical picture is to think of the spin-half particle as having an angular
momentum vector pointing in a random direction in space, but subject to the constraint that a particular
component of the angular momentum, say Sz, is positive, rather than negative.

• Thus in the case of |z+〉 = |0〉, which means Sz = +1/2, think of Sx and Sy as having random values.
Strictly speaking these quantities are undefined, so one should not think about them at all. However, it is
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rather difficult to have a mental picture of an object spinning in three dimensions, but which has only one
component of angular momentum. Thus treating one component as definite and the other two as random,
while not an exact representation of quantum physics, is less likely to lead to incorrect conclusions than if
one thinks of all three components as having well-defined values.

◦ An example of an incorrect conclusion is the notion that a spin-half particle can carry a large amount
of information in terms of the orientation of its spin axis. To specify the orientation in space of the axis of a
gyroscope requires on the order of log2(1/∆θ) + log2(1/∆φ) bits, where ∆θ and ∆φ are the precisions with
which the direction is specified (in polar coordinates). This can be quite a few bits, and in this sense the
direction along which the angular momentum vector of a gyroscope is pointing can “contain” or “carry” a
large amount of information. By contrast, the spin degree of freedom of a spin-half particle never carries or
contains more than 1 bit of information, a fact which if ignored gives rise to various misunderstandings and
paradoxes.

1.4 General d

⋆ In quantum information theory a Hilbert space H of dimension d = 3 is referred to as a qutrit, one
with d = 4 is sometimes called a ququart, and the generic term for any d > 2 is qudit. We will assume d <∞
to avoid complications which arise in infinite-dimensional Hilbert spaces.

• In atomic physics it is natural to think of d = 3 as “spin 1” and d = 4 as “spin 3/2”, etc.

⋆ A collection of linearly independent vectors {|βj〉} form a basis of H provided any |ψ〉 in H can be
written as a linear combination:

|ψ〉 =
∑

j

cj |βj〉. (5)

The number d of vectors forming the basis is the dimension of H and does not depend on the choice of basis.

⋆ A particularly useful case is an orthonormal basis {|bj〉}, j = 1, 2, . . . d, with the property that

〈bj |bk〉 = δjk. (6)

The inner product of two basis vectors is 0 for j 6= k, i.e., they are orthogonal, and equal to 1 for j = k, i.e.,
they are normalized.

• If we write
|v〉 =

∑

j

vj |bj〉, |w〉 =
∑

j

wj |bj〉, (7)

where the coefficients vj and wj are given by

vj = 〈bj |v〉, wj = 〈bj |w〉, (8)

the inner product can be written as

(|v〉)†|w〉 = 〈v|w〉 =
∑

j

v∗jwj , (9)

which can be thought of as the product of a “bra” vector

〈v| = (|v〉)† =
∑

j

v∗j 〈bj | (10)

with the “ket” vector |w〉. (The terminology goes back to Dirac, who referred to 〈v|w〉 as a bracket.)

• For more on the † operation, see below.

⋆ It is often convenient to think of |w〉 as represented by a column vector

|w〉 =









w1

w2

. . .
wd









, (11)
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and 〈v| by a row vector
〈v| = (v∗1 , v

∗
2 , · · · v∗d). (12)

The inner product (9) is then the matrix product of the row times the column vector.

◦ Of course the numbers vj and wj depend on the basis {|bj〉}. The inner product 〈v|w〉, however, is
independent of the choice of basis.

1.5 Kets as physical properties

⋆ In quantum mechanics, two kets or two vectors |ψ〉 and c|ψ〉, where c is any nonzero complex number
denote exactly the same physical property. For this reason it is sometimes helpful to say that the physical
state corresponds not to a particular ket in the Hilbert space, but to the ray, or one-dimensional subspace,
defined by the collection of all the complex multiples of a particular ket.

• One can always choose c (assuming |ψ〉 is not the zero vector, but that never represents any physical
situation) in such a way that the |ψ〉 corresponding to a particular physical situation is normalized, 〈ψ|ψ〉 = 1
or ‖ψ‖ = 1, where the norm ‖ψ‖ of a state |ψ〉 is the positive square root of

‖ψ‖2 = 〈ψ|ψ〉, (13)

and is zero if and only if |ψ〉 is the (unique) zero vector, which will be written as 0 (and is not to be confused
with |0〉).

◦ Normalized vectors can always be multiplied by a phase factor, a complex number of the form eiφ where
φ is real, without changing the normalization or the physical interpretation, so normalization by itself does
not single out a single vector representing a particular physical state of affairs.

◦ For many purposes it is convenient to use normalized vectors, and for this reason some students of the
subject have the mistaken impression that any vector representing a quantum system must be normalized.
But that is to turn convenience into legalism. There are circumstances in which it is more convenient not
to use normalized vectors, and even if normalization is desirable it can often be supplied at the end rather
than in the middle of a calculation

• The state of a single qubit is always a linear combination of the basis vectors |0〉 and |1〉, or |z+〉 and
|z−〉:

|ψ〉 = α|0〉+ β|1〉 = α|z+〉+ β|z−〉, (14)

where α and β are complex numbers. When α 6= 0 this can be rewritten as

α|0〉+ β|1〉 = α(|0〉+ β/α|1〉) = α(|0〉+ γ|1〉), γ := β/α. (15)

Since the physical significance of this state does not change if it is multiplied by a (nonzero) constant, we
may multiply by α−1 and obtain a standard (unnormalized) form

|0〉+ γ|1〉 = |z+〉+ γ|z−〉 (16)

characterized by a single complex number γ. There is then a one-to-one correspondence between different
physical states or rays, and complex numbers γ, if one includes γ = ∞ to signify the ray generated by |1〉.

!! Avoid the following mistake. Just because |ψ〉 and c|ψ〉 have the same physical interpretation does not
mean that one can multiply a vector inside some formula by a constant without changing the physics. Thus
|χ〉+ |ψ〉 and |χ〉− |ψ〉 will (in general) not have the same physical significance. See the examples in (3) and
the discussion above of (16). An overall constant makes no difference, but changing the relative magnitudes
or phases of two kets in a sum can make a difference.

⋆ Two nonzero vectors |ψ〉 and |φ〉 which are orthogonal, 〈φ|ψ〉 = 0, represent distinct physical properties:
if one corresponds to a property, such as Sz = +1/2, which is a correct description of a physical system at a
particular time, then the other corresponds to a physical property which is not true (false) for this system
at this time. That is, the physical properties are mutually exclusive.

� Exercise. There are six vectors in (2) and (3). Which pairs represent mutually exclusive properties?
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◦ An example of mutually exclusive properties from classical physics: P = “The energy is less than 1
Joule”; Q = “The energy is greater than 2 Joules.”

⋆ There are cases in which |ψ〉 is neither a multiple of |φ〉, nor is it orthogonal to |φ〉. For example,
the Sz = +1/2 vector in (2) and the Sx = +1/2 vector in (3). These represent neither the same physical
situation, nor do they represent distinct physical situations. Instead they represent incompatible properties,
where the term “incompatible” has a very special quantum mechanical meaning with no exact classical
counterpart.

• A quantum system cannot simultaneously possess two incompatible properties. For example, a spin-
half particle cannot have both Sx = 1/2 and Sz = 1/2. There is nothing in the Hilbert space that could be
used to represent such a combined property.

⋆ All the major conceptual difficulties of quantum theory are associated with the fact that the quantum
Hilbert space allows incompatible properties.

• There is nothing analogous to this in classical physics, so knowing what to do (or not do) with incom-
patible properties is key to a clear understanding of quantum theory.

2 Operators

2.1 Definition

⋆ Operators are linear maps of the Hilbert space H onto itself. If A is an operator, then for any |ψ〉 in
H, A|ψ〉 is another element in H, and linearity means that

A
(

b|ψ〉+ c|φ〉
)

= bA|ψ〉+ cA|φ〉 (17)

for any pair |ψ〉 and |φ〉, and any two (complex) numbers b and c.

• The product AB of two operators A and B is defined by

(AB)|ψ〉 = A
(

B|ψ〉
)

= AB|ψ〉, (18)

where one usually omits the parentheses, as on the right side.

• Note that in general AB 6= BA, the product of two operators depends upon the order. If AB = BA
one says that the operators A and B commute with each other; otherwise they do not commute.

2.2 Dyads and completeness

⋆ The simplest operator is a dyad, written in Dirac notation as a ket followed directly by a bra, e.g.,
|χ〉〈ω|. Its action is defined by

(

|χ〉〈ω|
)

|ψ〉 = |χ〉〈ω|ψ〉 =
(

〈ω|ψ〉
)

|χ〉. (19)

◦ The middle term is not really required for the definition, as the left side is defined by the right side: the
scalar (complex number) 〈ω|ψ〉 multiplying the ket |χ〉. Nonetheless the middle term, formed by removing
the parentheses and replacing two vertical bars ‖ between ω and ψ with one bar | is one of the examples of
“Dirac magic” which makes this notation appealing to physicists.

• The following “completeness relation”, where {|bj〉} is any orthonormal basis, is extremely useful:

I =
∑

j

|bj〉〈bj |. (20)

Here I is the identity operator, I|ψ〉 = |ψ〉 for any |ψ〉, and the sum on the right is over the dyads |bj〉〈bj |
formed from the elements of the orthonormal basis.

◦ Among the useful applications of (20):

|ψ〉 =
(

∑

j

|bj〉〈bj |
)

|ψ〉 =
∑

|bj〉〈bj |ψ〉 =
∑

j

〈bj |ψ〉 · |bj〉, (21)
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where a dot has been inserted in the final expression for clarity. Thus one has a good mnemonic for the
expansion coefficients of an arbitrary ket in some orthonormal basis.

2.3 Matrices

⋆ Given an operator A and a basis {βj}, which need not be orthonormal, the matrix associated with A
is the square array of numbers Ajk defined by:

A|βk〉 =
∑

j

|βj〉Ajk =
∑

j

Ajk|βj〉. (22)

◦ The intermediate form with the matrix elements following the kets can provide a useful mnemonic for
the order of the subscripts because it looks like the “natural” Dirac expression given below in (23).

◦ Note that the matrix depends on the choice of basis as well as on the operator A.

⋆ In the case of an orthonormal basis {|bj〉}, where for convenience we will use |j〉 as an abbreviation
for {|bj〉}, one can employ the completeness relation (20) to write

A|k〉 = I ·A|k〉 =
(

∑

j

|j〉〈j|
)

A|k〉 =
∑

j

|j〉〈j|A|k〉 =
∑

j

〈j|A|k〉 · |j〉. (23)

Here 〈j|A|k〉, the inner product of |j〉 with A|k〉, is the same as Ajk in (22). Note that the order j before k
is the same in both cases. Thus 〈j|A|k〉 is referred to as a “matrix element” when using Dirac notation.

◦ Indeed, anything of the form 〈ψ|A|ω〉 is referred to as a “matrix element”, even when no matrix is in
view!

• In a similar way

A = I ·A · I =
∑

j

|j〉〈j| ·A ·
∑

k

|k〉〈k| =
∑

jk

〈j|A|k〉 · |j〉〈k|. (24)

allows us to express the operator A as a sum of dyads, with coefficients given by its matrix elements.

� Exercise. Show that 〈j|A|k〉 = Ajk, where Ajk is defined using (22) with |βj〉 = |j〉.
• When A refers to a qubit or a spin half particle the usual way of writing the matrix in the standard

(or computational) basis is (note the order of the elements):
(

〈0|A|0〉 〈0|A|1〉
〈1|A|0〉 〈1|A|1〉

)

=

(

〈z+|A|z+〉 〈z+|A|z−〉
〈z−|A|z+〉 〈z−|A|z−〉

)

(25)

• Another application of (20) is in writing the matrix element of the product of two operators in terms
of the individual matrix elements:

〈j|AB|k〉 = 〈j|A · I ·B|k〉 =
∑

m

〈j|A|m〉〈m|B|k〉. (26)

Using subscripts this equation would be written as

(

AB
)

jk
=

∑

m

AjmBmk. (27)

⋆ The rank of an operator A or its matrix is the maximum number of linearly independent rows of the
matrix, which is the same as the maximum number of linearly independent columns.

• The rank does not depend upon which basis is used to produce the matrix for the operator.

• The rank of a dyad is 1.

⋆ The trace Tr(A) of an operator A is the sum of the diagonal elements of its matrix:

Tr(A) =
∑

j

〈j|A|j〉 =
∑

j

Ajj . (28)
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One can show that the trace is independent of the basis used in define the matrix elements. In particular,
one does not need to use an orthonormal basis;

∑

j Ajj can be used with the Ajj defined in (22).

• The following are very useful formulas

Tr
(

|φ〉〈ψ|
)

= 〈ψ|φ〉, Tr
(

A|φ〉〈ψ|
)

= 〈ψ|A|φ〉 (29)

� Exercise. Derive the formulas in (29)

2.4 Dagger or adjoint

⋆ The dagger or adjoint operation † can be illustrated by some examples:

(

|ψ〉
)†

= 〈ψ|,
(

〈ψ|
)†

= |ψ〉, (30)
(

b|ψ〉+ c|φ〉
)†

= b∗〈ψ|+ c∗〈φ|, (31)
(

|ψ〉〈ω|
)†

= |ω〉〈ψ| (32)

〈j|A†|k〉 =
(

〈k|A|j〉
)∗
, (33)

(

aA+ bB
)†

= a∗A† + b∗B†, (34)

(AB)† = B†A†. (35)

◦ Note that the dagger operation is antilinear in that scalars such as a and b are replaced by their complex
conjugates. In fact, † can be thought of as a generalization of the idea of taking a complex conjugate, and
in mathematics texts it is often denoted by ∗.

• The operator A† is called the adjoint of the operator A. From (33) one sees that the matrix of A† is
the complex conjugate of the transpose of the matrix of A.

� Exercise. Suppose that

A =
∑

j

αj |ψj〉〈φj |, (36)

with the αj complex numbers. What is A†?

� Exercise. Use the result you just obtained for A† together with (24) in order to derive (33).

2.5 Hermitian operators

⋆ A Hermitian or self-adjoint operator A is defined by the property that A = A†, so it is a normal
operator. It is the quantum analog of a real (as opposed to a complex) number. Its eigenvalues αj are real
numbers.

◦ The terms “Hermitian” and “self-adjoint” mean the same thing for a finite-dimensional Hilbert space,
which is all we are concerned with; the distinction is important for infinite-dimensional spaces.

• Hermitian operators in quantum mechanics are used to represent physical variables, quantities such as
energy, momentum, angular momentum, position, and the like. The operator representing the energy is the
Hamiltonian H.

◦ The operator Sz = 1

2

(

|z+〉〈z+| − |z−〉〈z−|
)

represents the the z component of angular momentum (in
units of ~) of a spin-half particle.

⋆ In classical physics a physical variable, such as the energy or a component of angular momentum,
always has a well-defined value for a physical system in a particular state. In quantum physics this is no
longer the case: if a quantum system is in the state |ψ〉, the physical variable corresponding to the operator
A has a well-defined value if and only if |ψ〉 is an eigenvector of A, A|ψ〉 = α|ψ〉, where α, necessarily a real
number since A† = A, is the value of the physical variable in this state.
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◦ The eigenstates of Sz for a spin-half particle are |z+〉 and |z−〉, with eigenvalues of +1/2 and −1/2,
respectively. Thus for such a particle the z component of angular momentum can take on only two values
(it is “quantized”), in contrast to the (uncountably) infinite set of values available to a classical particle.

◦ If |ψ〉 is not an eigenstate of A, then in this state the physical quantity A is undefined, or meaningless

in the sense that quantum theory can assign it no meaning.

◦ The state |x+〉 is an eigenstate of Sx but not of Sz. Hence in this state Sx has a well-defined value
(1/2), whereas Sz is undefined.

• There have been many attempts to assign a physical meaning to A when a quantum system is in a
state which is not an eigenstate of A. All such attempts to make what is called a “hidden variable” theory
have (thus far, at least) been unsuccessful.

• However a ket |ψ〉 which is not an eigenstate of A can be employed as a pre-probability to assign
probabilities to the different values of A; see separate notes Probabilities, and also Sec. 2.10 below.

⋆ Any Hermitian operator A can be diagonalized using an orthonormal basis, that is

A =
∑

j

αj |aj〉〈aj | (37)

where the basis vectors |aj〉 are eigenvectors or eigenkets of A and the numbers αj , which are real numbers
when A is a Hermitian operator, are its eigenvalues. Equivalently, the matrix of A in this basis is diagonal

〈aj |A|ak〉 = αjδjk. (38)

• Equation (37) is often referred to as the spectral form or spectral resolution of the operator A.

◦ Note that the completeness relation (20) is of the form (37), since the eigenvalues of I are all equal to
1.

2.6 Projectors

⋆ A projector, short for “orthogonal projection operator”, is a Hermitian operator P = P † which is
idempotent in the sense that P 2 = P . Equivalently, it is a Hermitian operator all or whose eigenvalues are
either 0 or 1. Therefore there is always a basis (which depends, of course, on the projector) in which its
matrix is diagonal in the sense of (38), with only 0 or 1 on the diagonal. Conversely, such a matrix always
represents a projector.

• There is a one-to-one correspondence between a projector P and the subspace P of the Hilbert space
that it projects onto. P consists of all the kets |ψ〉 such that P |ψ〉 = |ψ〉; i.e., it is the eigenspace consisting
of eigenvectors of P with eigenvalue 1.

◦ The term “projector” is used because such an operator “projects” a vector in a “perpendicular” manner
onto a subspace. See Fig. 3.4 in CQT.

◦ Both the identity I and the zero operator 0 which maps every ket onto the zero ket are projectors.

◦ A more interesting example is the dyad |ψ〉〈ψ| for a normalized (‖ψ‖ = 1) state |ψ〉, for which it is
convenient to use the abbreviation

[ψ] = |ψ〉〈ψ| (39)

If |ψ〉 is not normalized (and not zero), the corresponding projector is |ψ〉〈ψ| divided by 〈ψ|ψ〉.
◦ If |ψ〉 and |φ〉 are two normalized states orthogonal to each other, 〈ψ|φ〉 = 0, then the sum [ψ] + [φ] =

|ψ〉〈ψ|+ |φ〉〈φ| of the corresponding dyads is also a projector.

� Exercise. Prove it.

⋆ The physical significance of projectors is that they represent physical properties of a quantum system
that can be either true or false. The property P corresponding to a projector P (it is convenient to use the
same symbol for both) is true if the physical state |ψ〉 of the system is an eigenstate of P with eigenvalue
1, and false if it is an eigenstate with eigenvalue 0. If |ψ〉 is not an eigenstate of P , then the corresponding
property is undefined (meaningless) for this state.
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◦ For example, |z+〉〈z+| is the projector for a spin half particle corresponding to the property Sz = +1/2.
If the particle is in the state |z+〉 the property is true, while if the particle is in the state |z−〉 the property
is false. In all other cases, such as the state |x+〉, the property is undefined.

• The negation of a property P is represented by the projector P̃ = I − P , also written as ∼P or ¬P . If
P is true, then P̃ is false, and vice versa.

• More generally, when two projectors P and Q are orthogonal, PQ = 0, the truth of one implies that
the other is false. Note that P̃P = (I − P )P = P − P 2 = P − P = 0.

◦ The negation of Sz = +1/2 is Sz = −1/2, and vice versa.

⋆ Two quantum properties represented by projectors P and Q are said to be compatible if PQ = QP ,
i.e., if P and Q commute. Otherwise, when PQ 6= QP , they are incompatible.

• When PQ = QP , the product PQ is itself a projector, and represents the property “P AND Q,” i.e, the
property that the system has both properties P and Q at the same time. On the other hand it is impossible
to make sense of the expression “P AND Q” when P and Q are incompatible. See the discussion in CQT
Sec. 4.6. Attempting to combine incompatible properties violates the single framework rule of quantum
interpretation, and leads sooner or later to contradictions and irresolvable paradoxes.

◦ The projectors |z+〉〈z+| and |x+〉〈x+| do not commute, and so Sz = +1/2 and Sx = +1/2 are examples
of incompatible properties.

� Exercise. Show that if P and Q are commuting projectors, then P + Q − PQ is a projector. Argue
that it represents “P OR Q” for the nonexclusive OR. What projector corresponds to the exclusive XOR?

2.7 Positive operators

⋆ The positive operators form another important class of Hermitian operators. They are defined by the
requirement that the αj in (37) be nonnegative, αj ≥ 0, or equivalently by the requirement that for every
ket |ψ〉

〈ψ|A|ψ〉 ≥ 0. (40)

◦ Both of these ways of characterizing a positive operator are useful for certain purposes, and both should
be memorized.

� Exercise. Show that these two definitions of a positive operator are equivalent in that each implies the
other.

⋆ Positive operators arise in quantum mechanics in various contexts.

• A density operator is a positive operator with trace equal to 1. Density operators are often employed
as pre-probabilities to generate probability distributions.

• A POVM (positive operator-valued measure) is a collection {Aj} of positive operators that sum to the
identity:

∑

j

Aj = I. (41)

The (projective) decomposition of the identity introduced below in (45) is an example of a POVM.

◦ POVMs are useful for discussing nonideal quantum measurements, and have many applications in
quantum information theory.

2.8 Unitary operators

⋆ A unitary operator U is defined by:

U †U = I = UU †. (42)

• In a finite-dimensional Hilbert space, with U mapping the space into itself, each equality in (42) implies
the other, so that one need only check one of them, say UU † = I, to see if U is unitary.
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• If one thinks of U as a matrix, the first equality in (42) is equivalent to the statement that the columns
of U , thought of as column vectors, form an orthonormal basis of the Hilbert space. The second equality
states that the rows of U likewise form an orthonormal basis.

� Exercise. Show this.

⋆ The eigenvalues of a unitary operator are complex numbers of magnitude 1, so typically of the form
eiφ. The real numbers +1 and −1 are included among the possible eigenvalues

⋆ The spectral representation of a unitary operator is of the form,

U =
∑

j

υj |uj〉, (43)

with |υj | = 1.

• In quantum mechanics unitary operators are used to change from one orthonormal basis to another, to
represent symmetries, such as rotational symmetry, and to describe some aspects of the dynamics or time

development of a quantum system.

2.9 Normal operators

⋆ A normal operator N on a Hilbert space is one that commutes with its adjoint, NN† = N†N . Normal
operators can be diagonalized using an orthonormal basis

N =
∑

j

νj |nj〉〈nj | =
∑

j

νj [nj ] (44)

where the basis vectors |nj〉 are eigenvectors of N , and the νj , which in general are complex numbers, are
eigenvalues.

⋆ The class of normal operators includes Hermitian operators and unitary operators as particular cases.

� Exercise. Show that any operator which can be written in the form (44) is a normal operator, i.e.,
NN† = N†N .

2.10 Decomposition of the identity

⋆ A very important concept in Hilbert space quantum mechanics is that of a decomposition of the

identity. This is a collection {Pj} of projectors that sum to the identity:

I =
∑

j

Pj , Pj = P †
j = P 2

j , PjPk = δjkPj . (45)

Here the equation Pj = P †
j = P 2

j has been included just to remind us that we are dealing with projectors.
The final equation, PjPk = δjkPj , which says that the different projectors are orthogonal to each other, is a
(nontrivial) consequence of the fact that

∑

j Pj = I.

◦ The term projective decomposition of the identity is sometimes used to distinguish what we are talking
about from a POVM (positive operator-valued measure), see Sec. 2.7.

⋆ An orthonormal basis {|bj〉} provides a decomposition of the identity if we set Pj in (45) equal to
[bj ] = |bj〉〈bj |. Compare (45) with the completeness relation in (20).

• In this case all the projectors in the decomposition are of rank 1, they project onto rays. Conversely,
if all the projectors in a decomposition are of rank 1, one obtains an orthonormal basis by choosing one
normalized ket from each ray.

⋆ By a quantum sample space we shall always mean some decomposition of the identity of the form (45).
The different projectors in the decomposition represent a collection of distinct quantum properties which
are mutually exclusive—this is the significance of PjPk = 0 for j 6= k—and which is complete in the sense
that these projectors sum to the identity operator I, which represents the property which is always true.
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• For more on quantum sample spaces and probabilities, see the notes Probabilities

⋆ An alternative way of writing the spectral form (44) of a normal operator is:

N =
∑

j

ν′jPj ; ν′j 6= ν′k for j 6= k. (46)

• The difference between (37) and (46) is the following. It is possible that some eigenvalues occur
repeatedly in the sum (37). It so, then these terms are collected together and the sum of all the dyads
associated with a single eigenvalue forms one of the projectors Pj in (46). Here is a simple example to
illustrate the idea:

N = ν′1
(

|n1〉〈n1|+ |n2〉〈n2|
)

+ ν′2
(

|n3〉〈n3|+ |n4〉〈n4|
)

, (47)

where ν′1 6= ν′2. In the notation of (46) we would set P1 = |n1〉〈n1|+ |n2〉〈n2| and P2 = |n3〉〈n3|+ |n4〉〈n4|,
and in the notation of (44) we would have ν1 = ν2 = ν′1, ν3 = ν4 = ν′2. Thus the use of primes on the
eigenvalues in (46) is simply to avoid confusion in the use of subscripts; the actual values are the same.

⋆ Note that the spectral form (46) associates a unique decomposition of the identity with any normal
operator N : the projectors correspond to different subspaces of the Hilbert space corresponding to the
different values, i.e., eigenvalues, this operator can take on.
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