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1 Introduction

⊙

In the case of classical stochastic processes there are no absolute rules for assigning proba-
bilities. One constructs a simplified model of the situation of interest (weather, stock prices, etc.),
and makes a guess as to what probabilities are to be assigned; typically there are some parameters
which can be adjusted on the basis of experiment.

◦ Of course people with lots of experience can make better guesses than those of us who are
new to the game, but this does not mean they have a deep understanding of what is going on.

• Classical statistical mechanics is similar. The Boltzmann distribution is a guess, though there
is a lot of evidence indicating that under the right circumstances (thermal equilibrium) it is a rather
good guess. We do not (yet) have a systematic way of deriving it from the principles of mechanics,
though there are various ways of showing that it is plausible.

⊙

the fact that classical Hamiltonian dynamics of a closed system, by which we mean one
where the dynamical laws are given by appropriate derivatives of a (possibly time-dependent)
Hamiltonian, is deterministic makes it possible to “translate” one’s guess about the probability
distribution for such a system at one time to something consistent with this at a later or at an
earlier time.

• In particular, let us assume we know that the system is in some region R0 of the phase
space at time t0, and the deterministic dynamical law of time evolution maps this to a region
R1 = T (t1, t0)R0 at time t1. Then if, say, we assign at time t0 uniform probability to the points

1



in R0 and zero probability to the complement Rc
0, then it is reasonable to do the same for R1 at

time t1, since T preserves phase-space “volume” (Liouville’s theorem).

◦ One can also think of assigning probabilities to the trajectories traced out buy points in the
phase space as a function of time.

⊙

If the classical system is not closed, in particular if it is a subsystem of a larger closed system,
one can no longer describe the dynamics of this (sub)system by means of its Hamiltonian, so the
situation is more complicated.

• Nonetheless, one can still hope in certain cases to obtain an approximate description of the
dynamics of an open system without solving the dynamics of a larger closed system in which it is
embedded, by treating the interaction between it and the rest of the world (its environment) by
introducing some sort of random forces, i.e., by means of a suitable stochastic dynamics.

◦ A Brownian particle in a fluid driven randomly by collisions with the invisible atoms sur-
rounding it is a well-known example of an open system.

⊙

The situation in quantum mechanics is similar, except for being a bit different. In particular,
one generally needs a stochastic dynamics even for a closed quantum system.

• This requires constructing a sample space of quantum histories (discussed in a different set of
notes) and then assigning probabilities to them. Once probabilities are assigned one can compute
conditional probabilities and carry out statistical inference in much the same way as in classical
stochastic processes.

• The Schrödinger equation (equivalently, the unitary time-development operators T (t, t′)) can
be used to compute conditional probabilities relating states of affairs at different times. To set
up the full probability distribution one needs to make some additional assumption(s), such as the
quantum state at a particular time, or a probability distribution at some time.

⊙

Unfortunately, the stochastic time development of closed quantum systems is not properly
discussed in current textbooks. Instead, probabilities are introduced by means of measurements.
This is an open-system approach since the measuring apparatus is part of the “environment” with
which the system of interest interacts. There is nothing wrong with that, but in order to understand
what is going on it is helpful to consider both the apparatus and the system it is measuring as part
of a larger closed system to which the laws of quantum dynamics apply. Trying to do this when
“measurement” is a necessary part of one’s approach to probabilities leads to difficult conceptual
problems: if the measurement apparatus is also part of a closed quantum system and one wants to
say what is going on, then one needs an even bigger measurement apparatus to interact with the
first one, and so on ad infinitum.

• Von Neumann was aware of this difficulty and tried to sweep it under the rug by appealing
to psychology; see the final chapter VI of his book. Most physicists (and philosophers) who have
studied it think that the formulation of quantum theory we owe to von Neumann contains a serious
measurement problem that he did not resolve.

• By formulating quantum probabilities in a consistent way and paying attention to sample
spaces, it is possible to avoid the measurement problem, and then describe realistic measurements
in proper quantum terms.

⊙

Using unitary dynamics to assign probabilities to histories in closed quantum systems can
best be discussed in several steps of increasing complexity. The Born rule, discussed in these notes,
is sufficient for assigning probabilities to histories that involve only two times: an initial time and
one later (though it could also be earlier) time. Section 2 gives the general formalism starting with
the case of a single pure initial state and then going on to more complicated situations. Some
applications of the formalism to a composite system are worked out in Sec. 3.

2



• Histories with three or more times require an extension of the Born rule that is not altogether
straightforward, and these are considered in a later set of notes.

2 General Formalism

2.1 Single initial state

⊙

The simplest case is that of histories of the form

Y k = [ψ0]⊙ [φk1], (1)

with a single initial state |ψ0〉, assumed to be normalized, at time t0, and an orthonormal basis
{φk1} at time t1. Notice that a single index k serves to label the projectors in (1). In order to
construct a complete history sample space of projectors that sum to the history identity I0⊙ I1 we
need another projector

Ȳ = (I1 − [ψ0])⊙ I2 (2)

to which we will assign probability zero.

⋆ Exercise. Check that the histories just described do form a sample space (mutually orthogonal
projectors that sum to Ĭ).

⊙

The Born rule then states that in this situation one should assign probabilities

Pr(Y k) = |〈φk1|T (t1, t0)|ψ0〉|2 = |〈ψ0|T (t0, t1)|φk1〉|2 (3)

= 〈φk1|T (t1, t0) [ψ0]T (t0, t1)|φk1〉 = 〈ψ0|T (t0, t1) [φk1]T (t1, t0)|ψ0〉 (4)

= Tr{ [φk1]T (t1, t0) [ψ0]T (t0, t1)} = Tr{ [ψ0]T (t0, t1) [φ
k
1]T (t1, t0)}. (5)

(along with Pr(Ȳ ) = 0) to these different histories. All of these expressions are equivalent; some-
times one is more useful, or at least provides different insight from, another.

⋆ Exercise. Show that all these expressions are equivalent. [Hint 1. Write out the right side of
(3) as the matrix element times its complex conjugate. Hint 2. Tr{|α〉〈β|A} = 〈β|A|α〉.]

⋆ Exercise. Show that
∑

k Pr(Y
k) = 1.

◦ We did not assume that t0 is earlier than t1. The Born rule does not require a time ordering.
⊙

A rather common way of writing the Born rule is:

Pr(Y k) = |〈φk1|ψ1〉|2; |ψ1〉 := T (t1, t0)|ψ0〉. (6)

In words: Start with |ψ0〉 as an initial state at time t0. Then integrate Schrödinger’s equation from
t0 to t1 to get |ψ1〉. Then take the absolute square of the inner product of |ψ1〉 with |φk1〉 to obtain
Pr(Y k).

• It is immediately obvious that (6) is just another way of writing (3), so it will give the same
result. It has, however, the following practical advantages. Rather than working out the entire
T (t1, t0), which could be a lot of work, one only has to find how it acts on a single ket, namely
|ψ0〉. In addition, once |ψ1〉 has been worked out, it can be used to find inner products with what
might be a rather large collection of kets forming the orthonormal basis {φk1}. And if one decides
that one is more interested in some other basis {φ̄k1} — well, |ψ1〉 is already in hand, so one just
needs to calculate a new set of inner products.

• A disadvantage of (6) is that one may be tempted to suppose that, in analogy with deter-
ministic classical mechanics, |ψ1〉 is “the state” of the quantum system at time t1, where “state” is
thought of as referring to a property. But if |ψ1〉 is incompatible with some, or perhaps all, of the
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|φk1〉, we are in difficulty, because |ψ1〉, or more precisely the property [ψ1], is incompatible with
the sample space, and we end up violating the single framework rule.

• This temptation can be resisted if one regards |ψ1〉 (or [ψ1], which is all we really need to use
in (6)) as a convenient calculational tool rather than some physical property of the system at time
t1. That is, it is a tool to calculate the probabilities Pr(Y k). It helps to call this tool by a name:
CQT uses “pre-probability,” which means that |ψ1〉 (or [ψ1]) is being used to calculate a probability,
or in fact several probabilities, whereas by itself it is neither a property nor a probability.

⋆ Exercise. Show that if at least two of the probabilities Pr(Y k) are nonzero, then |ψ1〉 is
necessarily incompatible with at least some of the kets {|φk1〉} making up the orthonormal basis.

• WARNING! The term “state” in quantum mechanics is used in a somewhat sloppy manner,
and can mean different things depending on the context. Thus a pre-probability can be referred
to as “the quantum state.” But in the question “What is the probability that the system is in the
state |φ21〉 at time t1?” the term “state” refers to a physical property. When “the state” is a density
operator the reference is (almost always) to a pre-probability. Even in classical mechanics the term
“state” can have various meanings. It can refer to a point in the phase space, but in statistical
mechanics it can refer to a probability distribution, as in “the Gibbs state.” Sometimes a bit of
sloppiness is useful, especially for informal discussion, but it can also cause confusion.

• Note that there are alternative ways to calculate the probabilities in (6) without referring to
|ψ1〉. In particular,

Pr(Y k) = |〈ψ0|φk0〉|2; |φk0〉 := T (t0, t1)|φk1〉 (7)

That is, for each k integrate the Schrödinger equation from t1 to t0 to obtain |φk0〉, and then use
the absolute square of its inner product with |ψ0〉.

◦ Again, since we are assuming that [ψ0] is a property of the system at time t0, it will not do to
also include the [φk0] among the properties at t0 unless they happen to commute with [ψ0], which
will in general not be the case. So regard the |φk0〉 as pre-probabilities, as calculational tools rather
than as representing real quantum properties.

⊙

Since the histories {Y k} all have the same initial state [ψ0], the (marginal) probability of
[ψ0] is 1, and therefore

Pr(Y k) = Pr(φk1 |ψ0) (8)

can be thought of as a conditional probability : the probability that at t1 the system is in the state
(has the property) [φk1] given that at time t0 it was in the state [ψ0].

⊙

Textbooks often intrepret probabilities of the form Pr(φk1 |ψ0) in terms of measurements: if
a quantum system starts off at time t0 in state |ψ0〉 and a measurement is carried out at (or shortly
after) time t1 to determine which of the mutually-exclusive states {[φk1]} it was in just before the
measurement took place, the probability that the apparatus will yield the result k corresponding
to [φk1] is Pr(φ

k
1 |ψ0).

• Such statements when carefully worded are correct, but tend to be confusing. What is in
view is some sort of idealized measurement setup. A good measurement will reveal what was there
just before the measurement took place. Naturally, “what was there” must be a sensible quantum
property. Later we will discuss what what goes on in an idealized measurement.

• Some textbooks assert that the property [φk1] revealed by an ideal measurement did not exist
before the measurement took place; somehow it was “created” by the measurement process. This
represents a serious misunderstanding (going back to von Neumann) of what measurements are
all about; dispelling it requires introducing a proper quantum description of measurements, which
must be deferred till a later set of notes.
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◦ A related idea is that of “wave function collapse,” which is discussed for a particular situation
in Sec. 3.5.

2.2 Examples

⊙

As a first example consider a spin-half particle with initial state |ψ0〉 = |z+〉 at time t0, and
trivial dynamics: T (t, t′) = I. Given an orthonormal basis

|φ11〉 = α|z+〉+ β|z−〉, |φ21〉 = −β∗|z+〉+ α∗|z−〉, (9)

with |α|2 + |β|2 = 1, the Born rule yields

Pr(Y 1) = Pr(φ11 |ψ0) = |α|2, Pr(Y 2) = Pr(φ22 |ψ0) = |β|2. (10)

• If, in particular, |φ11〉 = |x+〉, |φ21〉 = |x−〉, then |α|2 = |β|2 = 1/2, so the probability of each
of the two histories [z+] ⊙ [x+] and [z+] ⊙ [x−] is equal to 1/2. Or, given the initial state [z+] at
t0, the conditional probability of [x+] and of [x−] at some later time t1 is 1/2.

⊙

Next assume a less trivial dynamics: that produced by a constant magnetic field along the
z axis, so that with ∆t = t− t′ the time development operator T (t, t′) is given by

T (∆t) =

(

e−iω∆t/2 0

0 eiω∆t/2

)

, (11)

with ω a constant that is proportional to the strength of the magnetic field.

• Choose a family
[x+]⊙ {[x+], [x−]} (12)

where the curly brackets enclose the two possibilities (the decomposition of the identity) at time
t1.

• A straightforward calculation yields

Pr(x+1 |x+0 ) = 1
2(1 + cosω∆t), Pr(x−1 |x+0 ) = 1

2(1− cosω∆t). (13)

⋆ Exercise. Carry out the calculation.

• Given that the right side of (13) depends continuously on ∆t, and if we set t0 = 0 then
t1 = ∆t, one is tempted to think of the probability as something like a physical property that is
varying continuously with the time t1, and if one could somehow “watch” the particle one would
see this continuous variation.

◦ But such a picture is misleading, and here the textbook treatment invoking measurements
has some advantage. The history family for which we have derived (13) includes only two times,
t0 and a single later time t1, and if one were to think of an experimental test of the Born rule it
would be necessaary to somehow prepare the system at t0 in the state [x+] and then at t1 carry
out a measurement to determine if it is in [x+] or in [x−]. To check a probabilistic prediction
requires many measurements, and each measurement should begin by throwing away the system
used previously, since a measurement can perturb a quantum system in a serious way. One has to
start over with a fresh preparation of the state [x+], and again let the clock run for the desired
period ∆t before carrying out another measurement.

⊙

Toy alpha decay. See CQT Sec. 9.5.
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2.3 Initial basis

⊙

The Born rule can also be used to assign probabilities to a sample space of histories of the
form

Y (j,k) = [ψj
0]⊙ [φk1], (14)

where {|ψj
0〉} and {|φk1〉} are any two orthonormal bases of the Hilbert space, assuming that we are

considering a closed quantum system with a well-defined Hamiltonian and therefore time develop-
ment operators T (t, t′). The two bases might be the same, but there is no requirement that this be
the case.

⊙

Probabilities can then be assigned as in the case of a two-time Markov process, by first
defining the transition matrix

Mkj =M(k, j) = |〈φk1|T (t1, t0)|ψj
0〉|2. (15)

⋆ Exercise. Show that M(k, j) is doubly stochastic (each row and each column sums to 1).

◦ Of course (15) can be written in many other ways; see (3) to (5).

• Let us use the abbreviated notation

Pr(j0, k1) = Pr([ψj
0], [φ

k
1]), Pr(j0) := Pr([ψj

0]), Pr(k1) := Pr([φk1]) (16)

for the joint distribution and the marginals; the subscript helps keep track of the time.
⊙

Given the transition matrix in (15) and assuming some distribution Pr(j0) at the initial
time, one can define the joint distribution in the same way as for a Markov process:

Pr(j0, k1) =M(k, j) Pr(j0). (17)

◦ In particular, one might suppose that Pr(j0) is zero for all values of j except for, say, j = 1,
where it takes the value 1. In that case (17) gives the same result as in Sec. 2.1 if there we set |ψ0〉
equal to |ψ1

0〉.
• Quantum mechanics does not by itself determine Pr(j0). The situation is analogous to classical

mechanics, where to describe how a system moves as a function of time one needs not only the laws
of mechanics, but also a starting state or initial condition, the choice of which is not fixed by these
laws.

◦ Alternatively, one could just as well assume a distribution Pr(k1) at time t1 and then use it
to calculate the joint probability distribution

Pr(j0, k1) =M(k, j) Pr(k1). (18)

◦ The Born rule does not by itself single out a direction or a “sense” of time; it does not
distinguish future from past. One can assume t0 > t1 instead of t0 < t1.

2.4 Initial and final decomposition of the identity

⊙

It is possible to formulate the Born rule using arbitrary initial {P j
0 } and final {Qk

1} decom-
positions of the identiy H, in the following manner. Define a weight matrix

W (k, j) = Tr
[

Qk
1T (t1, t0)P

j
0T (t0, t1)

]

(19)

and use it to define a conditional probability

Pr(Qk
1 |P j

0 ) =W (k, j)/Tr(Pj) (20)
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• Using the properties of T (t, t′) one can show that

∑

k

Pr(Qk
1 |P j

0 ) = 1, (21)

as one would expect for a conditional probability.

⋆ Exercise. Verify (21)

• One can equally well interchange the roles of t0 and t1, and write

Pr(P j
0 |Qk

1) =W (k, j)/Tr(Qk). (22)

• Once again, the Born rule does not single out a direction of time; the scheme for assigning
probabilities is time reversible.

◦ Do not confuse this with time reversal symmetry, often denoted by T , as in the PCT theorem.
This T is a (possible) symmetry of the Hamiltonian H. Whether or not H has this symmetry it is
Hermitian, so the corresponding time-development operators are unitary, and that unitarity is the
basis of the time reversibility of the Born rule as discussed above.

◦ The time-reversibility of the Born rule is unfortunately somewhat obscured in the textbook
approach which emphasizes measurements, because real measurements are irreversible in the ther-
modynamic sense. That is a separate issue.

3 Composite Systems

3.1 Introduction

• Consider a bipartite system with Hilbert space Ha ⊗Hb. The Born rule is formally just the
same as for a single system, but the fact that the probabilities at time t1 refer to a composite
system introduces some new concepts and terminology.

• To keep the discussion simple, we will assume an initial pure state |ψ0〉 which evolves under
unitary time evolution to |ψ1〉, and discuss probabilities at time t1 using |ψ1〉 as the pre-probability.
All probabilities will be conditional on |ψ0〉, so will be denoted by Pr(· · · ) instead of the clumsier
Pr(· · · |ψ0), and since only properties at t1 are under consideration, in this section we drop the
subscript 1 from various operators and labels.

⊙

Let us suppose that we are interested in a decomposition of the identity {P j} for system
a and another decomposition {Qk} for system b, which could correspond in either case (or both
cases) to an orthonormal basis. Thus we shall want to consider probabilities of the form

Pr(P j , Qk) = 〈ψ1|P j ⊗Qk|ψ1〉 (23)

with marginals

Pr(P j) =
∑

k

Pr(P j , Qk) = 〈ψ1|P j ⊗ Ib|ψ1〉, Pr(Qk) = 〈ψ1|Ia ⊗Qk|ψ1〉. (24)

◦ Note that P j ⊗ Ib is often abbreviated to P j

3.2 Marginals and reduced density operators

⊙

If one is interested in one of the marginals, say Pr(P j), and not in the entire distribution
(23) it is sometimes convenient to write it in the form

Pr(P j) = Tr(ρaP
j) (25)
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where the reduced density operator ρa on Ha can be defined as a partial trace

ρa = Trb[ψ1] (26)

over the projector [ψ1] = |ψ1〉〈ψ1|, which is an operator on Ha ⊗Hb.

• There is a great deal of lore, not all of it helpful, associated with density operators in quantum
textbooks and the literature of quantum foundations. For present purposes let us take the attitude
that ρa is simply a convenient calculational tool for obtaining probabilities which can also be written
without reference to it, as in (24). Thus it is an example, as is |ψ1〉, of a pre-probability.

• Why is it convenient? Suppose that da = 2 and db = 50. Then ρa is a small 2 × 2 matrix,
easy to parametrize, that can be used for various different decompositions {P j}, whereas |ψ1〉 or
the corresponding [ψ1] might be quite a mess.

• Convenience, however, also means there are limitations on what one can calculate from ρa by

itself. In particular, it provides no information about the correlations that may be present between
system a and b. If one is interested in these, some other mathematical tool is needed.

◦ Compare with ordinary probability theory. The joint distibution of two random variables
Pr(V = v,W = w) contains more information than Pr(V = v) or (except when they are indepen-
dent) both Pr(V = v) and Pr(W = w).

3.3 Correlations and conditional states

⊙

Suppose we are interested in correlations between a and b given the pre-probability |ψ1〉.
The simplest situation is that in which one of the decompositions corresponds to an orthonormal
basis; let us suppose that P j = |aj〉〈aj |. One can then consider the expansion

|ψ1〉 =
∑

j

|aj〉 ⊗ |βj〉, (27)

where the |βj〉 are simple expansion coefficients: not normalized nor orthogonal and perhaps not
even a basis of Hb. But useful in that we can write the joint distribution in the form:

Pr(P j , Qk) = Pr(aj , Qk) = 〈βj |Qk|βj〉. (28)

Another useful thing to note is that

Pr(P j) = Pr(aj) = 〈βj |βj〉. (29)

⋆ Exercise. Derive (28) starting with (23), and verify (29).

• By combining (28) and (29) one arrives at a formula for the conditional probability:

Pr(Qk |P j) = Pr(Qk | aj) = 〈β̄j |Qk|β̄j〉, |β̄j〉 := |βj〉/‖βj‖, ‖βj‖ =
√

〈βj |βj〉. (30)

◦ In words: one carries out the expansion in (27), but then renormalizes the ket |βj〉 before
using it as a pre-probability to calculate the conditional probability of Qk given aj .

• One can call |βj〉 or the normalized |β̄j〉 a conditional ket or conditional state: it is a pre-
probability, since it is used to compute a (conditional) probability distribution.

3.4 Example: singlet-state correlations

⊙

The following example will illustrate the use of conditional states. Suppose that a and b are
two spin-half particles, and

|ψ1〉 = (1/
√
2)(|z+a z−b 〉 − |z−a z+b 〉), (31)
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the spin singlet state. (It corresponds to zero total angular momentum of the the two particles.)

• We use the z basis for a: P 1 = [z+a ], P
2 = [z−a ]. The conditional states of b are then:

|β1〉 = |z−〉/
√
2, |β̄1〉 = |z−〉; |β2〉 = |z+〉/

√
2, |β̄2〉 = |z+〉. (32)

◦ By squaring the factor of 1/
√
2 we obtain the marginal probabilities Pr(z+a ) = Pr(z−a ) = 1/2.

• Let us choose for b a decomposition Q1 = [z+b ], Q
2 = [z−b ]. Then by means of (30) we find

that:
Pr(z+b | z+a ) = 0, Pr(z−b | z+a ) = 1, Pr(z+b | z−a ) = 1, Pr(z−b | z+a ) = 0. (33)

• If we choose a different decomposition, say Q1 = [x+b ], Q
2 = [x−b ], then of course we get a

different answer:

Pr(x+b | z+a ) = Pr(x−b | z+a ) = 1/2, Pr(x+b | z−a ) = Pr(x−b | z+a ) = 1/2. (34)

◦ Needless to say, one should not try and combine the incompatible (in the quantum sense)
results in (33) and (34): We cannot conclude from z+a that for particle b it is the case that Sbz =
−1/2 and at the same time Sbx has equal probabilities to take the values +1/2 and −1/2.

⋆ Exercise. Work out the conditional probabilities in the case in which Q1 = [w+
b ], Q

2 = [w−

b ]
for w some arbitary direction in space corresponding to polar coordinates θ, φ.

⊙

We could also use a different decomposition for particle a. Let us consider the general case
of P 1 = [w+

a ], P
2 = [w−

a ], where w denotes an arbitary direction in space (arbitary point on the
Bloch sphere). We then need to carry out the expansion (27) in the w basis. It turns out that up
to a phase (which depends upon the phase conventions one uses for spin-half states, but has no
effect on the physics) one can write

|ψ1〉 = (1/
√
2)(|w+

a w
−

b 〉 − |w−

a w
+
b 〉). (35)

• As a consequence the conditional kets are now

|β1〉 = |w−〉/
√
2, |β̄1〉 = |w−〉; |β2〉 = |w+〉/

√
2, |β̄2〉 = |w+〉, (36)

and extracting conditional probabilities for a given decomposition for particle b proceeds in an
obvious way.

3.5 Wave function collapse

⊙

While (30) is a sensible, and often an efficient, way of computing conditional probabilities,
it is usually presented in textbooks under the heading of “wave function collapse,” or similar
words, and described as something that happens when a measurement is carried out. This has
unfortunately given rise to much nonsense, including the notion that measurements on quantum
systems produce effects at very great distances (thinking of a and b as a long distance apart) at
speeds which can exceed the speed of light, which seems to bring quantum mechanics into conflict
with relativity theory.

• A discussion of what measurements actually measure when described in proper quantum
terms must await the introduction of additional material (on multitime histories), but the following
classical analogy should help in avoiding the pitfalls associated with wave function collapse.

⊙

Charlie in Chicago takes two slips of paper, one red and one green, places them in two opaque
envelopes, and after shuffling them so that he himself does not know which is which, addresses one
to Alice in Atlanta and the other to Bob in Boston, both of whom know the protocol Charlie is
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following. Upon receipt of the envelope addressed to her Alice opens it and sees a red slip of paper.
From this she can immediately conclude that the slip in Bob’s envelope is green, whether or not
Bob has already opened his envelope, or will ever do so. Her conclusion is not based on a belief
that opening her envelope to “measure” the color of the slip of paper has any influence on the color
of Bob’s slip. Instead she is employing statistical reasoning in the following way.

• Before Alice opens the envelope she (or Bob or Charlie) can assign probabilities to the various
situations as follows:

Pr(Ra, Rb) = Pr(Ga, Gb) = 0, Pr(Ra, Gb) = Pr(Ga, Rb) = 1/2, (37)

where Ra means a red slip in Alice’s envelope, Gb a green slip in Bob’s, etc., and Pr() in (37) is
the joint probability distribution of the colors. From the usual rule for conditional probabilities it
follows that

Pr(Rb |Ra) = 0, Pr(Gb |Ra) = 1, (38)

and this is the conditional probability distribution that Alice uses to infer the color of Bob’s slip
knowing that the one in her envelope is red. One might say that she uses the outcome of her
observation to “collapse” the initial (marginal) probability distribution Pr(Rb) = Pr(Gb) = 1/2
corresponding to (37) onto the conditional probability distribution (38). But the colors of the two
slips of paper are not at all affected by Alice’s “measurement.” It is her knowledge of the world
that changes, in a way which we do not find at all surprising. The “collapse,” if one calls it that,
refers to a method of reasoning, not a physical effect.

⊙

To relate this analogy to the previous example, think of [z+] and [z−] as analogous to the
properties R and G, respectively. Assume that a measurement is carried out on particle a to
determine the value of Saz. If it is a good measurement it reveals a property of particle a before
the measurement was carried out, and using conditional probabilities obtained from conditional
kets, or by working out the joint probability distribution of Saz and Sbz using (23), with |ψ1〉 from
(31), one arrives at the set of conditional probabilities in (33) which are the analogs of (37). The
probabilistic reasoning required when a and b are spin-half particles is the same as when they are
colored slips of paper.

• What brings about additional structure in the spin-half case is that it is rather natural to
think of using a different, incompatible sample space, say P̄ 1 = [w+

a ], P̄
2 = [w−

a ], where w is neither
z nor −z, because one can easily imagine measuring Saw rather than Saz. However, simultaneous
measurements of Saw and an Saz are not possible (as correctly stated in the textbooks). The
component which Alice (now thought of as in a physics laboratory) chooses to measure determines
what she learns about particle a, and therefore what she can say about particle b. But this choice
has absolutely no influence on particle b, as one can demonstrate by carrying out the requisite
calculations in detail. This is done (in a somewhat tedious way) in Ch. 23 of CQT.
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