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1 Introduction

⊙

A stochastic process or random process is a sequence of successive events in time, described
in a probabilistic fashion.

• After the great success of Newton’s mechanics in describing planetary motion, the belief
among physicists was that time development in nature is fundamentally deterministic: if the state
of the entire universe at some particular time is given with sufficient precision, then its future and
past are determined, and can in principle be calculated.

◦ The most famous statement of this idea is by Laplace (1814):
– We may regard the present state of the universe as the effect of its past and the cause of its

future. An intellect which at a certain moment would know all forces that set nature in motion,
and all positions of all items of which nature is composed, if this intellect were also vast enough to
submit these data to analysis, it would embrace in a single formula the movements of the greatest
bodies of the universe and those of the tiniest atom; for such an intellect nothing would be uncertain
and the future just like the past would be present before its eyes.

• Various arguments show that such a calculation is in practice impossible. Quantum mechanics
means it is not even possible in principle. We have to use probabilities.

⊙

References. Classical stochastic process are discussed in CQT Secs. 8.2, 9.1, and 9.2, and
DeGroot and Schervish Sec. 2.4. For a very extensive treatment with a large number of examples
see Ross. The quantum sample space is discussed in CQT Ch. 8, and the assignment of probabilities
is the subject of the chapters that immediately follow.
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2 Classical Stochastic Processes

2.1 Formalism

⊙

For simplicity consider a finite number of discrete times t0 < t1 < · · · < tf , and at each time
the same sample space S of mutually exclusive possibilities, at most countably infinite. We will
usually choose it to be finite and independent of the time.

◦ Example. A coin is tossed several times in succession: S = {H,T}, heads or tails.

◦ A die is rolled several times in succession: S = {1, 2, 3, 4, 5, 6}.
⊙

To describe the stochastic process itself we need a sample space S̆ of sequences s of the form

s = (s0, s1, s2, . . . sf ), (1)

where each sj is some element of S. We shall refer to a particular s as a history, and to S̆ as the
history sample space, or sample space of histories.

◦ Notice that the order of events in time matters: HHT , that is s0 = H, s2 = H, s2 = T , is
not the same thing as HTH for a coin tossed three times in a row. The different time orderings
represent mutually exclusive possibilities.

⊙

Again for simplicity assume that the event algebra Ĕ consists of all subsets (including ∅ and
S̆ itself) of S̆: any collection of histories from the sample space belongs to the event algebra.

⊙

Finally, probabilities must be assigned to all items in the event algebra. We do this by
assigning a nonnegative number Pr(s) to each history in S̆ in such a way that they sum 1. An
element of E is assigned a probability equal to the sum of the probabilities of the individual histories
that it contains.

◦ There is no general rule for assigning such probabilities; anything is allowed, provided the
numbers are nonnegative and sum to 1. Typically one is trying to produce a stochastic model of
some series of events, so one makes an assignment for which the mathematics is not too difficult,
perhaps containing some parameters which could be chosen to fit experimental results.

⊙

If the sj that make up a history s are themselves integers or real numbers, as is often the
case, they are random variables, since, e.g., s2 assigns to s the third element in (s0, s1, s2 . . .).
Consequently there is a one-to-one correspondence between elements of the sample space and the
collections of values taken by these f+1 random variables, and one can regard the random variables
taken together as constituting the sample space.

• Given the joint distribution Pr(s) one can calculate the marginal or single time distribution
Pr(sj) for any particular j:

Pr(sj) =
∑

s0

∑

s1

· · ·
∑

sj−1

∑

sj+1

· · ·
∑

sf

Pr(s0, s1, . . . sj−1, sj , sj+1, . . . sf ). (2)

◦ However, from a knowledge of Pr(sj) for every j from 0 to f it is, in general, impossible to
construct the joint distribution Pr(s). The latter contains more information than found in the
collection of all the single time probabilities. It allows one to compute the correlations between the
values of the different sj representing states of the system at different times.

• As the reader will have noticed, there is nothing really special about stochastic processes from
the perspective of general probability theory. Sample space, event algebra, probabilities: all follow
the usual rules. The only special thing about a stochastic process is the way in which one views it
and the types of questions one asks.
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2.2 Independent processes

• Consider the specific case of a coin tossed N times in a row, and let sj = H or T be the
outcome on toss j. The sample space is of size 2N . A simple way of assigning probabilities is to
suppose that each time the coin is tossed the probability is p that the result is H and q = 1−p that
it is T , with p and q independent of the toss, and that the tosses are statistically independent, so
that the probability associated with some sequence or history is just the product of the probabilities
of the individual outcomes. Thus Pr(HHT ) is p2q, because H appears twice and T appeared once.

⊙

More generally an independent stochastic process has a joint probability distribution given
by

Pr(s0, s1, . . . sf ) = Pr(s0) Pr(s1) . . .Pr(sf ), (3)

so it is an exception to the rule that the joint distribution contains more information than the
collection of one-time distributions.

• It may be that the one-time distributions are all identical functions of their arguments:

Pr(sj) = g(sj), (4)

where the function g(s) is the same, independent of j. In this case one says that the random variables
s0, s1, etc. are identically distributed. But one can also have a situation where Pr(sj) = gj(sj), i.e.,
there are different functions giving probabilities of the different random variables.

• The case of “independent identically-distributed random variables” comes up so often in books
on probability that it is often abbreviated to i.i.d. Note that the coin tossing example we started
with is of this form if one replaces H with +1 and T with −1 so as to turn the outcome into a
random variable. A die rolled several times in succession (assuming it is not carefully rolled in
exactly the same way each time) is described by an i.i.d.

◦ Despite the simplicity of i.i.d.’s, figuring out their statistical properties can require some effort.

⋆ Exercise. Suppose an honest die is rolled N times in a row and a record is made of the number
of spots. What is the probability that the sum will be smaller than 2N , assuming that N is large?
If that is too easy, consider the case where all the ps are equal except p6 = 1/5.

• In a sense what is distinctive about i.i.d.’s, and to some extent more general independent
processes, is that the time ordering plays no role. The fact that the die has come up with s = 1 on
three successive rolls does not increase the probability that it will come up s = 6 the next time.

⋆ Exercise. In fact if the game has just started and you have observed s = 1 on the first three
rolls you might want to conclude that the probability of s = 6 on the fourth roll is less than 1/6.
Discuss.

2.3 Markov processes

• A Markov process is a simple type of stochastic process in which the time order in a sequence
of events plays a significant role: what has just happened can influence the probability of what
happens next.

⊙

An example is a random walk in one dimension. Let the time t = j be a nonnegative integer,
and let the location of the walker at time j be an integer sj , positive or negative. At each time
the walker can hop to the left, sj+1 = sj − 1, with probability p, or to the right, sj+1 = sj + 1,
with probability r, or stay put, sj+1 = sj , with probability q; p + q + r = 1. Obviously, knowing
something about the walker’s location at time t = j will provide useful information about its
location at t = j + 1; the sj are not statistically independent.

• To get a finite sample space one can suppose that

−N ≤ sj ≤ N, (5)
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where N is some positive integer, and use periodic boundary conditions: the random walker hops
from N to −N instead of hopping from N to N +1, and from −N to N instead of to −N − 1. The
sample space S̆ is then the set of all sequences (1) with the sj lying in the range (5) for every j, a
collection of (2N + 1)f+1 histories.

◦ Some sequences will be assigned zero probability because we only allow hops such that |sj+1−
sj | ≤ 1, and these could be eliminated from the sample space without changing anything, but by
the same token they can simply be left in the same space and assigned zero probability.

◦ Assigning probabilities to random walks is a particular case of the general scheme used for
Markov processes described next.

⊙

The joint probability distribution for a Markov process, of which the random walk is a
particular case, is constructed in the following way. Write

Pr(s0, s1) = Pr(s1 | s0) Pr(s0), Pr(s0, s1, s2) = Pr(s0, s1) Pr(s2 | s0, s1), (6)

and so forth. Thus if we know the marginal probability distribution Pr(s0) and the conditional
probabilities Pr(s1 | s0), Pr(s2 | s0, s1), Pr(s3 | s0, s1, s2), and so forth, we can multiply them together
to calculate Pr(s0, s1, . . . sf ). Thus far no assumption has been made; this could be done for any
stochastic process.

⊙

The Markov assumption is that for every j it is the case that

Pr(sj+1 | s0, s1, . . . sj) = Pr(sj+1 | sj) =M(sj+1, sj), (7)

i.e., the conditional probability on the left side depends on sj+1 and sj , as one would expect, but
is then independent of s0, s1, . . . up to sj−1.

• One refers to M(sj+1, sj) as the (Markov) transition matrix. Since a conditional probability
is a “genuine” probability distribution for its left argument (the one preceding | ), it follows that
M(s, s′) ≥ 0, and for every s′

∑

s

M(s, s′) = 1. (8)

Think of M(s, s′) as a matrix Mss′ . Each column consists of nonnegative numbers that sum to 1.

◦ A matrix Mss′ or M(s, s′) with nonnegative elements that satisfies (8) is called a stochastic

matrix.

• We have assumed that M(sj+1, sj) depends only on the values sj+1 and sj of the two ar-
guments, which is to say we are dealing with a stationary Markov process. One could also make
the transition matrix depend explicitly on the time step: M(j; sj+1, sj). The result would be a
nonstationary Markov process.

◦ The random walker is described by a stationary random process, but the walker itself is not
stationary: it hops from integer to integer, although sometimes it stays put. Thus “stationary”
refers to the fact that the hopping probabilities which enter the transition matrix do not depend
upon the time.

• One can think of the Markov property (7) as a “lack of memory” of what happened previously.
E.g., the walker’s next position depends on its current position, but apart from that its earlier
positions have no influence on what happens next.

⊙

Putting together (6) and (7) one arrives at the formula

Pr(s0, s1, . . . sf ) =M(sf , sf−1)M(sf−1, sf−2) · · ·M(s1, s0) Pr(s0) (9)

for the joint probability distribution.
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• From this one can calculate the marginal distribution for any sj :

Pr(sj) =
∑

s0,s1,...sj−1

M(sj , sj−1)M(sj−1, sj−2) · · ·Pr(s0) =M j Pr(s0) (10)

where the right side uses an obvious matrix notation, with Pr(s0), and thus Pr(sj), a column vector.

⋆ Exercise. How should (9) and (10) be modified for a nonstationary Markov process?

⋆ Exercise. Show that if M is a stochastic matrix and Pr(s0) an arbitrary probability distribu-
tion, the joint distribution defined by the right hand side of (9) has the property that for every j
it is the case that Pr(sj+1 | s0, s1, . . . sj) = Pr(sj+1 | sj); i.e., the first equality in (7) is satisfied.

• Note. Probabilists often use the transpose of our M as the transition matrix, and modify the
right side of (10) accordingly, with Pr(sj) a row rather than a column vector, and the rows rather
than the columns of the transition matrix summing to 1. The row sum rather than the column
sum defines what one means by a stochastic matrix.

• A matrix M(s, s′) for which each row as well as each column sums to 1 is called doubly

stochastic.
⊙

Back to the random walk. For this case the transition matrix is:

M(s, s′) =











p if s = s′ − 1

q if s = s′

r if s = s′ + 1.

(11)

with, if we use the restriction (5) to keep the sample space finite, an obvious modification to take
care of the periodic boundary condition.

⋆ Exercise. Make the obvious modification assuming N = 1, and write down M as a 3 × 3
matrix with rows and columns in the order −1, 0, 1 from top to bottom and from left to right.
Check that the columns add to 1.

⋆ Exercise. The matrix you have just constructed also has the property that each row sums to
1, so it is doubly stochastic. However, you can make a small modification in it by adding ǫ to one
matrix element and subtracting it from another so that the matrix remains stochastic (columns
sum to 1) but is no longer doubly stochastic. Do this, and then explain the significance of the
modified entries in terms of hopping probabilities.

• Rather than using periodic boundary conditions for the random walk it is possible to employ
“reflecting” boundary conditions: when sj = N , at the next step the walker either stays put or
hops to N − 1; when sj = −N it either stays put or hops to −(N − 1), with suitable probabilities
(for which there is not a unique choice).

⋆ Exercise. For the N = 1 case modify the stochastic matrix you obtained previously using
periodic boundary conditions, so that it becomes appropriate for reflecting boundary conditions.
Explain briefly the significance of the changes. Is the transition matrix still doubly stochastic?

2.4 Statistical inference

• Statistical inference in the case of a stochastic process can be carried out using conditional
probabilities in the usual way.

⊙

Let us consider a specific example involving a random walk, where N is large so we won’t
have to worry about periodic boundary conditions. Suppose that at t = 0 the walker is at s = 0
and at t = 3 the walker is at s = 1. What is its location at t = 2?
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• We use the first datum, s = 0 at t = 0, to set up the probability distribution Pr(s), see (9).
There will be 33 = 27 histories of the form (s0 = 0, s1, s2, s3) with nonzero probability, assuming
that p, q, r in (11) are all positive, because at each step the walker has 3 choices. The probability
of a given history will then be piqjrk if the history involves i hops to the left, j cases of staying
put, and k hops to the right, with i+ j + k = 3.

◦ Use the second datum, s3 = 1, to select from the 27 histories just mentioned the ones we are
interested in, where s3 = +1. In the following table the probability is listed just below each history.

(0,−1, 0, 1) (0, 0, 0, 1) (0, 0, 1, 1) (0, 1, 0, 1) (0, 1, 1, 1) (0, 1, 2, 1)
pr2 q2r q2r pr2 q2r pr2

(12)

• These six probabilities are weights in the sense that they are positive numbers giving the
relative probabilities of the different possibilities, even though they do not add up to 1. To convert
them into the (conditional) probabilities we are interested it, divide each by the sum, 3r(q2 + pr).
(It is possible to rewrite this in terms of only two hopping probabilities, say p and r, using the fact
that p+ q + r = 1, but that does not necessarily lead to a simpler expression.)

• So where was the walker at t = 2? There is no definite answer to this question, but we
can assign probabilities to the different values of s2 using the weights in (12)—note that s2 is the
next-to-the-last entry in (s0, s1, s2, s3). The three possibilities s2 = 0 or 1 or 2 are then assigned
the following conditional probabilities:

Pr(s2 = 0 | s3 = 1) =
q2 + 2pr

3(q2 + pr)
, Pr(s2 = 1 | s3 = 1) =

2q2

3(q2 + pr)
,

Pr(s2 = 2 | s3 = 1) =
pr

3(q2 + pr)
. (13)

⋆ Exercise. One check on (13): set q = 0 and work out the probabilities in this case, where
there are a fewer walks (with nonzero probabilities) to consider.

◦ One could very well include s0 = 0 along with s3 = 1 as another condition to the right of the
bar | in (13), since the two data actually enter the problem in a symmetrical way. Conditions are
often omitted from conditional probabilities when they are evident from the context, so one could
also omit s3 = 1.

⋆ Exercise. What is Pr(s2) given only the condition that s0 = 0, no constraint at time t = 3?

⋆ Exercise. Suppose you were only given that s3 = 1 and no information about where the walker
was at t = 0. Could you still find Pr(s2)? Or at least make a plausible guess?

3 Quantum Stochastic Processes

3.1 Introduction

• A quantum stochastic process consists of sequences of quantum properties (subspaces of the
Hilbert space) at successive times to which probabilities can be assigned.

◦ Classical stochastic processes provide a good starting point for thinking about the quantum
case, but, as one would expect, the latter involves some additional ideas.

• There are two problems. The first is to set up a quantum sample space of histories and the
corresponding event algebra. This topic is addressed below. The second is to assign probabilities
in a manner related to Schrödinger’s equation, which is more complicated, and is taken up in a
later set of notes.
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3.2 Quantum histories

⊙

Consider a finite sequence of times t0 < t1 < t2 < · · · tf . A quantum history assigns to the
quantum system at each of these times some quantum property: a subspace of the Hilbert space
or, equivalently, its projector. We can write such a history schematically in the form

F0 ⊙ F1 ⊙ F2 ⊙ · · ·Ff , (14)

where each Fm is the projector (property) at time tm.

◦ Read (14) as “F0 is true at t0, F1 is true at t1, . . .Ff is true at tf .” The significance of ⊙ will
be explained shortly.

◦ Example for a spin-half particle when f = 2, a history with events at f + 1 = 3 different
times.

[z+]⊙ [z−]⊙ [x+]. (15)

◦ Note that Fm = I is an acceptable property of the quantum system, but since it is always
true, inserting it at time tm tells us nothing at all: this time might just as well be omitted from
the history. Similarly, one could insert an additional time, say time t2.5 someplace between t2 and
t3, and let F2.5 = I. This would make no difference.

•WARNING! We are not assuming that the Fm projectors are related by Schrödinger’s equation
or the time development operators; do not assume that Fm+1 = T (tm+1, tm)FmT (tm, tm+1). For
the present just assume that each Fm can be chosen independently of all the others.

• The next idea, which goes back to C. Isham, can be motivated in the following way. The
classical sample space corresponding to flipping a coin three times in succession is formally the
same as that obtained by flipping each of three (distinct) coins just once. Thus if the coins are
labeled 1, 2, and 3 (penny, nickel, dime) there are eight mutually exclusive events in the sample
space, things such as H1, T2, T3, just as if a single coin, say a quarter, were flipped three times in
a row. We already know how to describe three distinct quantum objects at a single time: use the
Hilbert space corresponding to the tensor product H1 ⊗H2 ⊗H3. Why not employ the same idea
for histories?

⊙

Indeed it works, and we shall think of the history (13) as a projector on the history Hilbert
space

H̆ = H0 ⊙H1 ⊙ · · ·Hf , (16)

a tensor product of f + 1 copies of the Hilbert space H used to represent properties of the system
at a single time.

• The symbol ⊙ means the same thing as the usual tensor product symbol ⊗; however, it is
convenient to have a distinctive notation when dealing with events at successive times.

◦ The tensor product of projectors, as in (14), is a projector. For a system with parts labeled
0, 1, 2, etc., the meaning would be: system 0 has property F0, system 1 has property F1, and so
forth. This corresponds to our interpretation of (14): the system of interest has property F0 at
time t0, F1 at time t1, and so forth.

• On any tensor product there are, of course, entangled states and projectors onto entangled
states. However, our discussion will be limited to the simplest situation in which histories of the
quantum system are either represented by products of projectors, as in (14), or sums of projectors
of this form.
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3.3 Sample space and event algebra

⊙

A quantum sample space is always a decomposition of the identity for some suitable Hilbert
space, a collection of projectors that sum to the identity. When interested in the properties of a
system with Hilbert space H at a single time we use a sample space consisting of projectors that
form a decomposition of the identity I operator on H. Thus a sample space of histories should
correspond to a decomposition of the identity Ĭ of the history Hilbert space H̆ introduced above in
(16).

• Be careful to distinguish the history identity

Ĭ = I1 ⊙ I2 ⊙ · · · If , (17)

an operator on the Hilbert space H̆ of histories, from the identity I on the Hilbert space H of the
system at a single time. In (17) we have used subscripts for I corresponding to those on the right
side of (16).

⊙

There are many ways to construct a history sample space. Here is one which is relatively
straightforward. At time tm choose a decomposition {P αm

m } of the single-time identity Im on Hm:

Im =
∑

αm

P αm
m . (18)

• Notation. The subscript m is used to label the time tm, the identity Im on the Hilbert space
Hm at this time (which will usually be the same as H, the ordinary Hilbert space used to describe
the system we are interested in), and the projectors which form a decomposition of the identity at
this time. The different projectors that constitute this decomposition are then distinguished from
each other by a superscript label αm; note that this is a label and not a power. Because the square
of a projector is equal to the projector there is no reason to raise a projector to some power, so
it is (relatively) safe to use the superscript position for a label. You can think of αm as taking on
integer values 1, 2, . . .; or 0, 1, . . . if you prefer.

◦ The decomposition might be the same for every m, but more flexibility is needed if we want
to include something like (15) in our discussion.

⋆ Exercise. Explain why.
⊙

Given the decompositions in (18) we can set up a history sample space consisting of projectors
on H̆ of the form

Y α = P α0

0
⊙ P α1

1
⊙ · · ·P

αf

f , (19)

where
α = (α0, α1, . . . αf ) (20)

is an (f + 1)-component label.

⋆ Exercise. Show that
Y αY β = δαβY

α (21)

where α = β means αm = βm for every m, and that

∑

α

Y α = Ĭ . (22)

⊙

We shall say that the sample space constructed in this way is a product sample space, because
we started off with separate samples spaces (18), one for each time, and formed the history sample
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space by taking the product of these spaces: the former is made up of all possible tensor products
(in the sense of ⊙) of projectors from the single-time sample spaces.

• Although product sample spaces as just defined are simple and often suffice, they do have their
limitations. Thus there are cases in which the history sample space, even though it contains only
projectors which are tensor products (in the sense of ⊙) of projectors at different times, does not

make use of a single decomposition of the identity at each time. A simple example for a spin-half
particle and f = 1 (two times) is the set of projectors

[z+]⊙ [z+], [z+]⊙ [z−], [z−]⊙ [x+], [z−]⊙ [x−]. (23)

⋆ Exercise. Check that the projectors in (23) form a decomposition of the history identity
Ĭ = I0 ⊙ I1 by showing that they are mutually orthogonal and that they sum to Ĭ.

• Another example that does not quite fit the pattern in (19) is that in which one supposes
that the quantum system starts off in a particular state |ψ0〉 at t0 and at later times t1, t2, etc. has
events of the sort drawn from the corresponding decompositions in (18). We could, in fact, use a
decomposition

I0 = [ψ0] + (I0 − [ψ0]) = P 1
0 + P 2

0 (24)

at t0, and construct the sample space as in (19). But since we are not really interested in histories
where the system does not start in the state |ψ0〉 or [ψ0], it is convenient to sum all the Y α with
α0 = 2, corresponding to histories that start off with (I − [ψ0]), into a single projector

Ȳ = P 2
0 ⊙ I1 ⊙ I2 · · · If , (25)

whose meaning is that the system was not in the state [ψ0] at t0, and nothing else is being said
about what happened to it later. Then we can forget about Ȳ , since it will be assigned zero
probability.

◦ The sample space then consists of Ȳ along with the Y α for which α1 = 1.

⋆ Exercise. Use the scheme just discussed to make up a sample space which contains the history
(15), assuming that [ψ0] = [z+]. List all of the projectors in the sample space.

⊙

There is no reason in principle why history sample spaces should not contain projectors onto
states that are “entangled” at different times, analogous to the entangled states at a single time
which quantum theory allows for the tensor product Hilbert space (in the sense of ⊗) of a system
containing several parts. Whether these more general possibilities are useful for describing the time
development of quantum systems in certain circumstances has not yet been studied. In these notes
we restrict ourselves to cases where the history sample space projectors are products (in the sense
of ⊙) of projectors at different times.

⊙

Once a sample space of histories has been established, the event algebra consists of sums
of projectors from this sample space, just as in the case of properties of a system at one time.
The connection between sample space and event algebra, at least formally, is just the same as for
quantum properties at a single time.

⊙

Two history sample spaces, and the corresponding event algebras are compatible if the
projectors in one commute with projectors in the other. This means one can construct a common
refinement whose event algebra includes both of the original event algebras. Otherwise they are
incompatible and cannot be combined (single framework rule).

• This compatibility rule is exactly the same as for alternative sample spaces (decompositions
of the identity) of a quantum system at one time.
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⊙

An additional rule comes into play when assigning probabilities to histories using extensions
of the Born rule to three or more times; in this case one has to apply a stronger compatibility
condition (known as consistency); more about that later,
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