
33-445 Advanced Quantum Physics Fall Semester, 2012
Assignment No. 3. Due Friday, September 14

COURSE WEB PAGE:
http://quantum.phys.cmu.edu/quad/

READING: Sources
Townsend = A Modern Approach to Quantum Mechanics, 2d ed
CQT = Consistent Quantum Theory. Individual chapters at: http://quantum.phys.cmu.edu/CQT/
HSQM = “Hilbert Space Quantum Mechanics” on course web page
PROBS = “Probabilities” on course web page

READING: Topics
Indicator functions: CQT Sec. 4.1
Decomposition of the identity: HSQM Sec. 2.9, 2.10; PROBS Sec. 2, 3; CQT Sec. 3.5
Physical properties: CQT Ch. 4
Physical variables: CQT Sec. 5.5
Born rule for probabilities: PROBS Sec. 5
Unitary operators: Townsend Ch. 2; HSQM Sec. 2.8; CQT Sec. 7.2
Rotations in three dimensions: Townsend Ch. 3
Spin one: Townsend Sec. 3.7
Angular momentum (mostly next week): Townsend Ch. 3.

READING AHEAD:
Angular momentum: Townsend Ch. 3
Unitary time development: Townsend Ch. 4; CQT Ch. 7

EXERCISES:

1. Turn in at most one page, and not less than half a page, indicating what you have read, examples
or exercises (apart from those assigned below) that you worked out, difficulties you encountered, questions
that came to mind, etc. You may include complaints about the course.

2. The matrices

Q =





1/6 i/3 −i/6
−i/3 2/3 −1/3
i/6 −1/3 1/6



 R =





1/2 0 −i/2
0 1 0
i/2 0 1/2





represent two commuting projectors on a three-dimensional Hilbert space H. Find the (unique) decomposi-
tion {Pj} of the identity I such that Q and R belong to the corresponding Boolean event algebra, which is
to say they can be written as sums of one or more of the Pj . Express your answer in terms of 3× 3 matrices
using the same basis as for Q and R above. (Hints: If B and C are members of the Boolean event algebra
of projectors, then so are BC, I − B, and I − C. How is the trace of a projector related to the dimension
of the subspace on which it projects?)

3. a) Let S and T be two indicator functions on the classical phase space, and suppose that ST = T .
One of the following assertions can be proved.

(i) If the system possesses property S it necessarily also possesses property T .
(ii) If the system possesses property T it necessarily also possesses property S.
Decide which is correct and explain why (a formal proof is not needed).

b) For a 3-dimensional Hilbert space construct two projectors P and Q that do not commute, PQ 6= QP ,
with the property that the intersection of R = P ∩ Q of the subspaces P and Q onto which they project is
of dimension 1. Try and make it a very simple example. Let R be the projector onto R. What are PR and
QR? [Hint 1: Both are projectors. Hint 2: You may prefer to work backwards, starting from R or R.]

c) Assuming that classical mechanics, i.e. (a), is a suitable guide, what might you conclude about rela-
tionships of the properties of a quantum system on the basis of what you found in (b)? Why might this
conclusion be somewhat troubling in light of the fact that PQ 6= QP?
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[Hint for the following problem: Sec. 3.7 in Townsend discusses spin 1.]

4. For a spin-one particle the matrix of Sy (setting h̄ = 1) in the standard of Sz basis is

Sy =
1√
2





0 −i 0
i 0 −i
0 i 0



 .

a) Find the projectors in the decomposition {Pj} corresponding to Sy (i.e., Sy =
∑

j sjPj , writing each
projector as a matrix in the standard basis. (Check that the matrices are Hermitian and sum to the identity.)
[Hint: Can you find the eigenvectors of Sy?]

b) Calculate the Born rule probabilities 〈ψ|Pj |ψ〉 for the different eigenvalues of Sy assuming a pre-
probability

|ψ〉 = 1√
2





1
i
0



 .

That is, first compute the column vector Pj |ψ〉 and then find its inner product with the row vector 〈ψ|.
Check that the probabilities add up to 1.

c) Calculate 〈Sy〉 using the eigenvalues of Sy and the probabilities you computed in (b). Then calculate
〈ψ|Sy|ψ〉 as a row vector times a matrix times a column vector. The two results should be the same.

5. a) Let A and B be two matrices corresponding to commuting Hermitian operators, [A,B] = 0. Assume
that the matrix of A is of the form

A =





a b c
b∗ d e
c∗ e∗ f



 .

Of course a, d, and f are real numbers. What else can you say in each of the following cases, based upon
[A,B] = 0?

(i): B =





1 0 0
0 2 0
0 0 3



 , (ii): B =





2 0 0
0 2 0
0 0 3



 .

b) There is a theorem that says that if A and B are two Hermitian (more generally, normal) operators
that commute with each other it is always possible to find an orthonormal basis in which both are diagonal.
Discuss how what you found in (a) is consistent with this theorem.

6. Let the matrix elements of an operator A be Ajk = 〈bj |A|bk〉 in the orthonormal basis {|bj〉} and
Ālm = 〈cl|A|cm〉 in the orthonormal basis {|cl〉}.

a) Show that the A and Ā matrices can be related by a unitary matrix U , Ā = UAU †, where the matrix
U can be expressed in terms of elements of the two orthonormal bases.

b) Suppose that in the {|z+〉, |z−〉} basis for a spin half particle the matrix of A is

A =

(

0 i
1 0

)

.

Use the construction in (a) to find the matrix Ālm in the

|y+〉 = (|z+〉+ i|z−〉)/
√
2, |y−〉 = (|z+〉 − i|z−〉)/

√
2

basis—i.e., construct the matrix U and then calculate the matrix product UAU †.

c) Would it make a difference in the Ā matrix if we used a different phase for |y−〉 than that employed
in (b)? E.g., suppose that

|y−〉 = eiφ(|z+〉 − i|z−〉)/
√
2.

How does this change things?
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