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Overview (Review)
Introduction
• DiVincenzo Criteria
• Characterising coherence times

Survey of possible qubits and implementations
• Neutral atoms
• Trapped ions

• Colour centres (e.g., NV-centers in diamond)
• Electron spins (e.g,. quantum dots)
• Superconducting qubits (charge, phase, flux)

• NMR
• Optical qubits
• Topological qubits

 
   



Back to the DiVincenzo Criteria:

D. P. DiVincenzo “The Physical Implementation of Quantum Computation”, Fortschritte der Physik 48, p. 771 (2000) 
arXiv:quant-ph/0002077 

Requirements for the implementation of quantum computation
1. A scalable physical system with well characterized qubits

2. The ability to initialize the state of the qubits to a simple fiducial state, such as |000...⟩

3. Long relevant decoherence times, much longer than the gate operation time

4. A “universal” set of quantum gates
        (single qubit rotations 
           +  C-Not / C-Phase / .... )

5. A qubit-specific measurement capability

 

|0i

|1i

|0i
|1i

U U

control                    target



Neutral atoms

Advantages:
• Production of large quantum registers
• Massive parallelism in gate operations
• Long coherence times (>20s)

Difficulties:
• Gates typically slower than other implementations (~ms for collisional gates)
    (Rydberg gates can be somewhat faster)
• Individual addressing (but recently achieved)



Quantum Register with neutral atoms in an optical lattice
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• Array of singly occupied sites
• Qubits encoded in long-lived internal states

(alkali atoms - electronic states, e.g., hyperfine)
• Single-qubit via laser/RF field coupling 
• Entanglement via Rydberg gates or via 

controlled collisions in a spin-dependent lattice
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Requirements:
• Long lived storage of qubits
• Addressing of individual qubits
• Single and two-qubit gate operations



Rb:
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Group II Atoms

Key properties
• Metastable triplet states:
   - 3P0 Lifetimes >150s (Fermions)
   - 3P1 linewidth ~ kHz
   - 3P2 lifetime >>150s
• Many nuclear spin levels for fermionic 
   isotopes
• Nuclear spin states decoupled from 
   electronic state on clock transition

87Sr (I=9/2):

689nm

• Extensively developed, 
   e.g., optical clocks
• Degenerate gases of Yb, Ca,...
• Stable lasers, especially for clock 
   transition frequency
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Quantum Computing with Alkaline Earth Atoms
87Sr (I=9/2):

689nm

A. J. Daley, M. M. Boyd, J. Ye, and P. Zoller, 
Phys. Rev. Lett. 101, 170504 (2008)

Implementation of Quantum Computing:
• Nuclear spin states for qubit storage
   (insensitive to magnetic field fluctuations)
   D. Hayes, P. S. Julienne, and I. H. Deutsch, 
      PRL 98, 070501 (2007) 
    I. Reichenbach and I. H. Deutsch, PRL 99, 123001 (2007). 

• Electronic state for:
   - Access to qubits
   - Gate operations

  HERE: Via state-dependent lattices
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Ye, Kimble, & Katori, Science 320, 1734 (2008).

AC Polarisability (AC-Stark Shift per intensity) for 87Sr



Polarizability and State-dependent lattices:
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FIG. 2: (a) Energy level diagram showing how independent
optical lattices can be produced for the 1S0 and 3P0 levels
by finding wavelengths where the polarisability of each of the
levels is zero and the other non-zero. (b) AC Polarisability
of 1S0 and 3P0 levels near 627nm. (c) AC polarisability of
1S0 and 3P0 levels near 689nm. (d) AC polarisability of dif-
ferent mF sublevels of the 3P2, F = 13/2 hyperfine level for
π−polarised light at 627nm and 689.2nm.

storage lattice for qubits, which will not affect the 3P0

states. Similarly, the polarizability of 3P0 at 689.2nm
is ∼ 1550a.u, whereas the polarisability of 1S0 is zero.
This is largely because of the near-resonant coupling of
1S0 to 3P1, which is made possible without large spon-
taneous emission rates due to the narrow linewidth of
3P1. This lattice can be used for transport, and atoms
in it will not be affected by the storage lattice. These
lattices can be made to have the same spatial period by
using angled beams in the case of the 627nm light, so that
the lattice period is increased to match that formed by
counterpropagating beams at 689.2nm, and the depths
can be made equal by using light of intensity I0 for the
storage and ∼ I0/4 for the transport lattice, facilitat-
ing transfer of atoms between the two lattices. Gate
operations can then be performed between distant sites
by transferring atoms state-selectively into the transport
lattice, and moving them to the appropriate distant site
(see below for more details). This is somewhat reminis-
cent of the use of spin-dependent lattices for alkali atoms
[2, 12, 14], where lattice lasers are tuned between fine-
structure states, which can lead to large heating and de-
coherence from spontaneous emissions. Here, the lattices
can be made completely independent by selection of the
correct wavelengths. Note that whilst we illustrate our
scheme in one dimension here, these ideas are generalis-
able to storage and transport lattices in 2D and 3D.

An essential ingredient for general-purpose quantum
information processing is the individual addressing of
qubits, both for readout and gate operations, which
can be achieved in this system by coupling selectively

to states in the long-lived 3P2 manifold. As shown
schematically in Fig. 1, we would transfer qubit states
|0〉 and |1〉 to the 3P0 level (which can be done state-
selectively in a large magnetic field due to the differ-
ential Zeeman shift of 109Hz/G between 1S0 and 3P0),
and then selectively transfer them to additional readout

levels |0x〉 and |1x〉 in the 3P2 level (e.g., for 87Sr we
could choose |0x〉 ≡ |3P2, F = 13/2, mF = −13/2〉 and
|1x〉 ≡ |3P2, F = 13/2, mF = −11/2〉, where F is the
total angular momentum and mF the magnetic sublevel,
and connect these states to the 3P0 level via off-resonant
Raman coupling to a 3S1 level). The individual qubit se-
lectivity can be based on a gradient magnetic field, as 3P2

is much more sensitive to magnetic fields 3P0 or 1S0. A
gradient field of 100 G/cm will provide an energy gradient
of 410 MHz/cm for |0x〉 or an energy difference of about
15kHz between atoms in neighbouring sites. In the same
field the 3P0 level states will be shifted by −mI × 1Hz in
neighbouring sites, which again indicates the advantage
of storing qubits on the nuclear spin states. This selec-
tively can be used to transfer atoms site-dependently to
the transport lattice, or to read out qubits by transfer-
ring only the |0〉 state to 3P2, then making fluorescence
measurements (e.g., using the cycling transition between
the 3P2, F = 13/2 and 3D3 manifold).

A necessary requirement here is that our states |0x〉
and |1x〉 are trapped in the combination of the storage
and transport lattices (these will both provide AC-Stark
shifts for the 3P2 level). In Fig. 2d we plot the polaris-
ability of all of the magnetic sublevels of 3P2, F = 13/2
at our lattice wavelengths, and the large tensor shifts
make certain mF levels suitable for trapping at the same
locations as our qubit states. If the depths of the storage
and transport lattices are chosen to be equal, then both
the |0x〉 level and the |1x〉 will be trapped, in lattices
about 2/3 and 1/3 of the depth of the storage lattice
respectively. The timescale for all transfer processes be-
tween lattices τtransfer is limited by the smallest trapping
frequency ωt (so that atoms are not coupled to excited
motional states), and by the frequency shift ωe between
neighbouring sites in the case of position-selective trans-
fer, as τtransfer & max(2π/ωt, 2π/ωe).

Single-qubit gates can be performed either by transfer-
ring atoms to the 3P0 level and then rotating the qubit
states by directly applying Raman couplings, or alter-
natively with single-qubit addressability. This would in-
volve using the 3P2 level in an intermediate step to trans-
fer atoms position-selectively to the 3P0 level. Two-qubit
gates are then performed using the transfer lattice. In
particular, a phase gate between qubits in site i and j
can be performed in a straight-forward manner by: (i)
transferring atoms in |0〉 on site i (and j) to the trans-
port lattice; (ii) moving the transport lattice relative to
the storage lattice so that an atom that was originally in
the |0〉 state on site i would now be present at site j; (iii)
generating a phase φ for the state conditioned on whether
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Quantum computing with Alkaline Earth Atoms

Key ideas:
• Independent Lattices for 3P0 and 1S0 states: storage and transport
• Qubits encoded on nuclear spin states, relatively insensitive to magnetic fields
• Local addressing via 3P2 level, which shifts in a gradient field 
  (100 G/cm - 410 MHz/cm, 15 kHz shift between neighbouring sites)

3P 0

transport / 
operations

|1|0

3P 0

1S 0

storage lattice

transport lattice

3P 2

3P 2

addressing addressing

Raman 
transfer

detection



Collisional Gates (simple example): • Gate: controlled collisions
   D. Jaksch et al., PRL 82, 1975 (’99)

• Operation performed in parallel for  
    whole system
• Simple preparation of a cluster state
• Ideal setup for measurement-based
   quantum computing.

internal states

move

      Atom 1   Atom 2

collision “by hand“

3P0
1S0



Extensions:

• Use additional nuclear spins: Quantum register encoded on a 
    single atom 

• Flying qubits, e.g., coupling to an optical cavity

1S0

3P1
3P0

3P2

1P1



Selected numbers:

Addressing
• 3P2 Shift mF=-13/2: 100 G/cm: 410 MHz / cm (ca. 15kHz per lattice site)  
• 1S0/3P0 Shifts: 100 G/cm:  ca. 1Hz / mI per lattice site

Spontaneous emission lifetime T1 (25kHz trap frequency lattices for 1S0 and 3P0 ):
• Storage 1S0: 20s
• Operations 3P0 / 3P2: 2s / 1s

Gate/readout Timescales:
• Lattice trapping frequency: 25 - 100 kHz  / collisional gate limit

Decoherence from Magnetic field fluctuations (T2)
• 1S0 shift: -185 Hz/G     -    Decoherence in mG fluctuations  <<1 Hz, 
• 3P0 shift: -195 Hz/G
Lossy blockade gates:
• 3P2-3P2 loss: 20 kHz

• Scalable physical system, well-defined qubits
• Initialisable to a fiducial state such as |000...>
• Long coherence times
• Universal set of quantum gates
• High efficiency, Qubit-specific measurements

Requirements:

Realisations underway: Kyoto (in lattices)
   Innsbruck, Houston (degenerate gases)



Ion traps

Advantages:
• Long coherence times (>20s for nuclear spins)
• Basic gates somewhat faster than neutral atoms (~0.01 ms)
• Individual addressing straightforward
• High-precision experiments already commonplace (also optical clocks)

Difficulties:
• Scaling to many qubits requires complicated traps
• Slower gates than many solid state implementations



Ion Trap Quantum Computer '95

• Cold ions in a linear trap

Qubits: internal atomic states

1-qubit gates: addressing ions with a 
laser

2-qubit gates: entanglement via 
exchange of phonons of quantized 

collective mode
• State vector

quantum register data bus

• QC as a time sequence of laser pulses
• Read out by quantum jumps



The 43Ca+ ion trap 
quantum computer

R. Blatt, Innsbruck



What has been achieved in the laboratory

• 2 … 15 ions / qubits
– high fidelity quantum gates
– simple algorithms
– teleportation (within a trap)
– error correction
– quantum simulation 

algorithms

R.Blatt
Innsbruck

D.Wineland
NIST



70 µm

String of ions a 
quantum register: 
addressing & read out

String of 40Ca+ Ions in a Linear Paul Trap

R. Blatt@Innsbruck



Addressable Cirac-Zoller 2-ion Controlled-NOT
Experimental Achievements: Innsbruck & NIST

Control Target

truth table CNOT:

R. Blatt et al., Nature 2003; 
Nature Physics 2008

fidelity F=0.993



Deterministic Teleportation
Experimental Achievements: Innsbruck & NIST

R. Blatt et al., Nature 2004



• teleportation protocol
     If Alice and Bob share a singlet (EPR) pair as a resource, we can 

teleport the unknown quantum state

• Innsbruck ion trap experiment: 

Alice Bob

A B
C

Protocol:
üCNOT between A&C
ümeasure A&C
ü classical communication Alice to Bob
ü rotate B

noise

EPR pair

deterministic teleportation:
ü no postselection
ü complete Bell measurement
ü on demand
ü only 10 μm L

Deterministic Teleportation
Experimental Achievements: Innsbruck & NIST



Fidelity: 0.76

656100 measurements, 
~ 10 h measurement time total

Reconstruction of quantum
state takes days on a 
classical computer

true
8 particle

entanglement

quantum byte

Quantum Byte

R. Blatt et al., Nature 2006



Scalability: Multizone Traps

• implementation: physically sending the qubit

ion trap quantum computer

exp.: Innsbruck, NIST 
Boulder, Michigan, Oxford,...

idea: Wineland et al.

Prospects
Although the basic elements of quantum computation have been 
demonstrated with atomic ions, operation errors must be significantly 
reduced and the number of ion qubits must be substantially increased if 
quantum computation is to be practical. Nevertheless, before fidelities 
and qubit numbers reach those required for a useful factoring machine, 
worthwhile quantum simulations might be realized.

More ion qubits and better fidelity
To create many-ion entangled states, there are two important goals: 
improving gate fidelity, and overcoming the additional problems that 
are associated with large numbers of ions. For fault-tolerant operation, a 
reasonable guideline is to assume that the probability of an error occur-
ring during a single gate operation should be of the order of 10−4 or 
lower. An important benchmark is the fidelity of two-qubit gates. The 
best error probability achieved so far is approximately 10−2, which was 
inferred from the fidelity of Bell-state generation63. In general, it seems 
that gate fidelities are compromised by limited control of classical com-
ponents (such as "uctuations in the laser-beam intensity at the positions 
of the ions) and by quantum limitations (such as decoherence caused 
by spontaneous emission)64. These are daunting technical problems; 
however, eventually, with sufficient care and engineering expertise, 
these factors are likely to be suppressed.

The multiqubit operations discussed in this review rely on the abil-
ity to isolate spectrally a single mode of the motion of an ion. Because 
there are 3N modes of motion for N trapped ions, as N becomes large, 
the mode spectrum becomes so dense that the gate speeds must be 
significantly reduced to avoid off-resonance coupling to other modes. 
Several proposals have been put forward to circumvent this problem65,66. 
Alternatively, a way to solve this problem with gates that have been 
demonstrated involves dis tributing the ions in an array of multiple trap 
zones18,67–69 (Fig. 6a). In this architecture, multiqubit gate operations 
could be carried out on a relatively small number of ions in mul tiple 
processing zones. Entanglement could be distributed between these 
zones by physically moving the ions18,68,69 or by optical means25,67,70–72. 
For quantum communication over large distances, optical distribution 
seems to be the only practical choice; for experiments in which local 
entanglement is desirable, moving ions is also an option. 

Examples of traps that could be used for scaling up the number of ions 
used in an algorithm are shown in Fig. 6b. Ions can be moved be tween 
zones by applying appropriate control electric potentials to the various 
electrode segments46,73–75. Individual ions have been moved ~1 mm in 

~50 µs without loss of coherence; the excitation of the ion’s motion (in 
its local well) was less than one quantum73. Multiple ions present in a 
single zone can be separated46,73 by inserting an electric potential ‘wedge’ 
between the ions. In the tele portation experiment by the NIST group46, 
two ions could be separated from a third in ~200 µs, with negligible 
excitation of the motional mode used for subsequent entangling opera-
tions between the two ions. This absence of motional excitation meant 
that an additional entangling-gate operation on the sepa rated ions could 
be implemented with reasonable fidelity. For algorithms that operate 
over long time periods, the ions’ motion will eventually become excited 
as a result of transportation and background noise from electric fields. 
To counteract this problem, additional laser-cooled ions could be used 
to cool the qubits ‘sympathetically’ (Fig. 6a). These ‘refrigerator’ ions 
could be identical to the qubit ions76, of a different isotope77 or of a dif-
ferent species60,78. They could also aid in detection and state preparation 
(described earlier). 

For all multiqubit gates that have been implemented so far, the speeds 
are proportional to the frequen cies of the modes of the ions, which scale 
as 1/d2

qe, where dqe is the distance of the ion to the nearest electrode. 
Therefore, it would be valuable to make traps as small as possible. Many 
groups have endeavoured to achieve this, but they have all observed 
significant heating of the ions, compromising gate fidelity. The heat-
ing is anomalously large compared with that expected to result from 
thermal noise, which arises from resistance in, or coupled to, the trap 
electrodes18,79–83. It scales approximately as 1/d4

qe (refs 18, 79–83), which 
is consistent with the presence of independently "uctuating potentials 
on electrode patches, the extent of which is small compared with dqe 
(ref. 79). The source of the heating has yet to be understood, but recent 
experiments80,82 indicate that it is thermally activated and can be signifi-
cantly suppressed by operating at low temperature. 

For large trap arrays, a robust means of fabrication will be required, 
as well as means of independently controlling a very large number of 
electrodes. Microelectromechanical systems (MEMS) fabrication tech-
nologies can be used for monolithic construction83,84, and trap struc-
tures can be further simplified by placing all electrodes in a plane84,85. 
To mitigate the problem of controlling many electrodes, it might be 
possible to incorporate ‘on-board’ electronics close to individual trap 
zones86. Laser beams must also be applied in several locations simultane-
ously, because it will be essential to carry out parallel operations when 
implementing complex algorithms. The recycling of laser beams can be 
used86,87, but the overall laser power requirements will still increase. If 
gates are implemented by using stimulated-Raman transitions, then a 

Gate
beam(s)

Qubit memory zone

a

To additional zones

b
Refrigerator

beam

Figure 6 | Multizone trap arrays. a, A schematic representation of a 
multizone trap array is shown. Each control electrode is depicted as a 
rectangle. Ions (blue circles) can be separated and moved to specific zones, 
including a memory zone, by applying appropriate electrical potentials. 
Because the ions’ motion will become excited as a result of transport 
(bidirectional arrow) and noisy ambient electric fields, refrigerator ions 
(red; which are cooled by the red laser beam) are used to cool the ions 
before gate operations, which are implemented with the blue laser beam. 
b, Examples of the electrode configurations of trap arrays are shown. In the 
upper left is a two-layer, six-zone linear trap in which entangled ions can be 

separated and used for algorithm demonstrations, including teleportation46 
(width of narrow slot (where the ions are located) = 200 µm). In the upper 
right is a three-layer, two-dimensional multizone trap that can be used to 
switch ion positions99 (width of slot = 200 µm). In the lower left is a single-
zone trap in which all of the electrodes lie in a single layer; this design 
considerably simplifies fabrication85. In the lower right is a single-layer, 
linear multizone trap fabricated on silicon (width of open slot for loading 
ions ! 95 µm), which can enable electronics to be fabricated on the same 
substrate that contains the trap electrodes. (Image courtesy of R. Slusher, 
Georgia Tech Research Institute, Atlanta).
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Nitrogen-Vacancy Centers

Advantages:
• Combine advantages of atomic systems with solid state
• Faster gate times (<µs) but faster decoherence (~2ms)
• Room-temperature operation

Difficulties:
• Lack of uniformity in qubit frequency
• Coupling qubits is more difficult (e.g., optical processes)

Pitt: Experiments in group of G. Dutt



GS Research talk, Mar 30th 2012!

System: NV color center in diamond 
 
 • Substitutional nitrogen atom replaces a single carbon atom in 
the lattice. 

"  P1 centers (S=1/2) 

• Vacancy (missing carbon in the lattice) becomes mobile at 
450°C, but forms a stable NV center when pairing with N 
!
• Two flavors (NV0 and NV-) have different optical properties. 
 
•  NV-: Excite with 532 nm off-resonantly or resonantly with 637 
nm, emission at 637 nm (ZPL) or 638 – 720 nm (PSB).  

•  Good single photon emitter. 
 

Early work:  
    S.Rand, N.Manson 

NV-center in diamond



GS Research talk, Mar 30th 2012!

Isolating Single Spins Isolating a single spin by laser spectroscopy



GS Research talk, Mar 30th 2012!

~ 10 ns 

System: NV color center in diamond 
•  non-zero electronic spin (S=1) ground state 
With zero-field splitting Δ=2.87 GHz 

•  Long T1 (~ 10ms – 4 sec) and T2 (~ 0.3 - 2 ms) 
times 
 
• Spin-state dependent fluorescence allows for 
spin detection at room temp, also allows spin 
pumping. 

•  Proximal nuclear spins (T2 ~ 100s of ms) can be 
controlled and measured. 

!  F. Jelezko et al, PRL 2004 
!  L. Childress et al, Science 2006 
!  G. Dutt et al, Science 2007 
!  Neumann et al, Science 2008 
!  Balasubramanian et al, N. Mat. 2009 

Early Pioneers: S.Rand, N.Manson 



GS Research talk, Mar 30th 2012!

Spin-Photon Entanglement E. Togan et al, Nature (2010)!

#  Fidelity F=69 ± 7 %, Probability 
of entanglement = 99.7% 

Slide: G. Dutt



GS Research talk, Mar 30th 2012!

Cavity-QED for Optical Interconnects 

•   Photons mediate entangled states of atoms (spins) at remote 
locations!

•  Strong coupling results in deterministic interactions!

•  Weak coupling allows for great improvement in probabilistic 
entanglement creation – loophole-free tests of Bell inequalities!

Slide: G. Dutt



Electron Spins

Advantages:
• Faster gate times (~ns) but faster decoherence (~30µs)

Difficulties:
• Production of regular arrays of, e.g., quantum dots is non-trivial



• Qubits are electron spins, e.g., in electrically gated quantum dots
• Single qubits can be manipulated via electrode potentials, microwave fields

• Two-qubit gates based on spin-exchange interaction. Can be switched 
   with electrical gates.

H = �J ~S1.~S2



Superconducting qubits

Pitt: Experiments J. Levy / S. Frolov

Advantages:
• Faster gate times (~ns) but faster decoherence (~0.5-9.6µs)
• Many possibilities for coupling to AMO systems (microwave/optical photons, 
                                                                                 atoms/ions/molecules)

Difficulties:
• Production of regular arrays of qubits is non-trivial



Flux qubit

• Measurements via sensitive magnetic field detection (SQUIDs)
• Control via applied microwave fields
• Coupling e.g., via magnetic fields

of Φe are shown in Fig. 1d. At the degeneracy point, the probability of 
observing either state is ½. As Φe is reduced, the probability of observing 
!    〉 increases while that of observing !    〉 decreases.

The first observation of quantum superposition in a flux qubit was 
made spectroscopically. The state of the flux qubit is measured with 
a d.c. superconducting quantum interference device (SQUID)14. This 
device consists of two Josephson junctions, each with critical current I0, 
connected in parallel on a superconducting loop of inductance L. The 
critical current of the SQUID Ic(Φs) is periodic in the externally applied 
magnetic flux Φs with period Φ0. In the limit βL ≡ 2LI0/Φ0 << 1 in which 
the Josephson inductance dominates the geometrical inductance, the 
critical current for Φs = (m + ½)Φ0 (m is an integer) is reduced to almost 
zero, and the flux dependence of the critical current takes the approxi-
mate form14 Ic(Φs) ≈ 2I0!cos(πΦs/Φ0)!. Thus, by biasing the SQUID with a 
constant magnetic flux near Φ0/2, and measuring the critical current, the 
changes in flux produced by a nearby qubit can be measured with high 
sensitivity. In most experiments with qubits, a pulse of current is applied 
to the SQUID, which either remains in the zero-voltage state or makes 
a transition to the voltage state, producing a voltage 2∆s/e. Because its 
current–voltage characteristic is hysteretic, the SQUID remains at this 
voltage until the current bias has been removed, allowing researchers 
to determine whether the SQUID has switched. For sufficiently small 
current pulses, the probability of the SQUID switching is zero, whereas 
the probability is one for sufficiently large pulses. The switching event 
is a stochastic process and needs to be repeated many times for the flux 
in the SQUID to be measured accurately.

The first step in spectroscopic observation of quantum superposition is 
to determine the height of the current pulse at which the SQUID switches 
— with, for example, a probability of ½ — as a function of Φe over a narrow 
range (perhaps ± 5mΦ0). Subsequently, a pulse of microwave flux is applied 
at frequency fm, which is of sufficient amplitude and duration to equalize 
the populations of the ground state and first excited state when the energy-
level splitting difference ν = hfm. Assuming that !    〉 is measured, then, on 
resonance, there will be a peak in the switching probability for Φe < Φ0/2 
and a corresponding dip for Φe > Φ0/2. An example of these results11,15 is 
shown in Fig. 2. The configuration of the qubit and the SQUID is shown 
in Fig. 2a, and the peaks and dips in the amplitude of the switching current 

Experiments on superconducting qubits are challenging. Most 
superconducting qubits are created by using electron-beam 
lithography, need millikelvin temperatures and an ultralow-noise 
environment to operate, and can be studied only by using very sensitive 
measurement techniques. 

Superconducting qubits generally require Josephson junctions 
with dimensions of the order of 0.1 × 0.1 µm2 — corresponding to a 
self-capacitance of about 1 fF — and are patterned by using shadow 
evaporation and electron-beam lithography79; an exception is the phase 
qubit, which typically has a junction of 1 × 1 µm2

 
and can be patterned 

photolithographically. The Josephson junctions are usually Al–AlxOy–Al 
(where x ≤ 2 and y ≤ 3), and the oxidation must be controlled to yield 
relatively precise values of Ej and Ec. Because qubit frequencies are 
usually 5–10 GHz (which corresponds to 0.25–0.5 K), the circuits are 
operated in dilution refrigerators, typically at temperatures of 
10–30 mK, to minimize thermal population of the upper state. 

Great efforts are made to attenuate external electrical and magnetic 
noise. The experiment is invariably enclosed in a Faraday cage — either 
a shielded room or the metal Dewar of the refrigerator with a contiguous 
metal box on top. The electrical leads that are connected to the qubits 
and their read-out devices are heavily filtered or attenuated. For 
example, lines carrying quasistatic bias currents usually have multiple 
low-pass filters at the various temperature stages of the refrigerator. 
These include both inductor–capacitor and resistor–capacitor filters that 
operate up to a few hundred megahertz, as well as wires running through 
copper powder, which results in substantial loss at higher frequencies5. 
The overall attenuation is typically 200 dB. Finally, the read-out process 
for probing a quantum system is very delicate.

Box 2 | Experimental issues with superconducting qubits

Figure 1 | The theory underlying flux qubits. a, Flux qubits consist of a 
superconducting loop interrupted by either one or three (shown) Josephson 
junctions. The two quantum states are magnetic flux Φ pointing up !    〉 
and Φ pointing down !    〉 or, equivalently, supercurrent Iq circulating in the 
loop anticlockwise and Iq circulating clockwise. b, The double-well potential 
(black) versus total flux Φ contained in a flux qubit is shown. The two wells 
are symmetrical when the externally applied magnetic flux Φe is (n + ½)Φ0, 
where n is an integer (n = 0 in this case). The coloured curves are the 
eigenfunctions (probability amplitudes) for the ground state (symmetrical; 
red) and first excited state (antisymmetrical; blue). c, The energy E of the 
two superpositions states in b versus the energy bias ε = 2Iq(Φe − Φ0/2) is 
shown. The diagonal dashed black lines show the classical energies. The 
energy-level splitting is Δ at the degeneracy point, ε = 0, and is ν for ε ≠ 0. 
d, The probabilities of the qubit flux pointing up (green) or down (yellow) 
in the ground state versus applied flux are shown.
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of Φe are shown in Fig. 1d. At the degeneracy point, the probability of 
observing either state is ½. As Φe is reduced, the probability of observing 
!    〉 increases while that of observing !    〉 decreases.

The first observation of quantum superposition in a flux qubit was 
made spectroscopically. The state of the flux qubit is measured with 
a d.c. superconducting quantum interference device (SQUID)14. This 
device consists of two Josephson junctions, each with critical current I0, 
connected in parallel on a superconducting loop of inductance L. The 
critical current of the SQUID Ic(Φs) is periodic in the externally applied 
magnetic flux Φs with period Φ0. In the limit βL ≡ 2LI0/Φ0 << 1 in which 
the Josephson inductance dominates the geometrical inductance, the 
critical current for Φs = (m + ½)Φ0 (m is an integer) is reduced to almost 
zero, and the flux dependence of the critical current takes the approxi-
mate form14 Ic(Φs) ≈ 2I0!cos(πΦs/Φ0)!. Thus, by biasing the SQUID with a 
constant magnetic flux near Φ0/2, and measuring the critical current, the 
changes in flux produced by a nearby qubit can be measured with high 
sensitivity. In most experiments with qubits, a pulse of current is applied 
to the SQUID, which either remains in the zero-voltage state or makes 
a transition to the voltage state, producing a voltage 2∆s/e. Because its 
current–voltage characteristic is hysteretic, the SQUID remains at this 
voltage until the current bias has been removed, allowing researchers 
to determine whether the SQUID has switched. For sufficiently small 
current pulses, the probability of the SQUID switching is zero, whereas 
the probability is one for sufficiently large pulses. The switching event 
is a stochastic process and needs to be repeated many times for the flux 
in the SQUID to be measured accurately.

The first step in spectroscopic observation of quantum superposition is 
to determine the height of the current pulse at which the SQUID switches 
— with, for example, a probability of ½ — as a function of Φe over a narrow 
range (perhaps ± 5mΦ0). Subsequently, a pulse of microwave flux is applied 
at frequency fm, which is of sufficient amplitude and duration to equalize 
the populations of the ground state and first excited state when the energy-
level splitting difference ν = hfm. Assuming that !    〉 is measured, then, on 
resonance, there will be a peak in the switching probability for Φe < Φ0/2 
and a corresponding dip for Φe > Φ0/2. An example of these results11,15 is 
shown in Fig. 2. The configuration of the qubit and the SQUID is shown 
in Fig. 2a, and the peaks and dips in the amplitude of the switching current 

Experiments on superconducting qubits are challenging. Most 
superconducting qubits are created by using electron-beam 
lithography, need millikelvin temperatures and an ultralow-noise 
environment to operate, and can be studied only by using very sensitive 
measurement techniques. 

Superconducting qubits generally require Josephson junctions 
with dimensions of the order of 0.1 × 0.1 µm2 — corresponding to a 
self-capacitance of about 1 fF — and are patterned by using shadow 
evaporation and electron-beam lithography79; an exception is the phase 
qubit, which typically has a junction of 1 × 1 µm2

 
and can be patterned 

photolithographically. The Josephson junctions are usually Al–AlxOy–Al 
(where x ≤ 2 and y ≤ 3), and the oxidation must be controlled to yield 
relatively precise values of Ej and Ec. Because qubit frequencies are 
usually 5–10 GHz (which corresponds to 0.25–0.5 K), the circuits are 
operated in dilution refrigerators, typically at temperatures of 
10–30 mK, to minimize thermal population of the upper state. 

Great efforts are made to attenuate external electrical and magnetic 
noise. The experiment is invariably enclosed in a Faraday cage — either 
a shielded room or the metal Dewar of the refrigerator with a contiguous 
metal box on top. The electrical leads that are connected to the qubits 
and their read-out devices are heavily filtered or attenuated. For 
example, lines carrying quasistatic bias currents usually have multiple 
low-pass filters at the various temperature stages of the refrigerator. 
These include both inductor–capacitor and resistor–capacitor filters that 
operate up to a few hundred megahertz, as well as wires running through 
copper powder, which results in substantial loss at higher frequencies5. 
The overall attenuation is typically 200 dB. Finally, the read-out process 
for probing a quantum system is very delicate.

Box 2 | Experimental issues with superconducting qubits

Figure 1 | The theory underlying flux qubits. a, Flux qubits consist of a 
superconducting loop interrupted by either one or three (shown) Josephson 
junctions. The two quantum states are magnetic flux Φ pointing up !    〉 
and Φ pointing down !    〉 or, equivalently, supercurrent Iq circulating in the 
loop anticlockwise and Iq circulating clockwise. b, The double-well potential 
(black) versus total flux Φ contained in a flux qubit is shown. The two wells 
are symmetrical when the externally applied magnetic flux Φe is (n + ½)Φ0, 
where n is an integer (n = 0 in this case). The coloured curves are the 
eigenfunctions (probability amplitudes) for the ground state (symmetrical; 
red) and first excited state (antisymmetrical; blue). c, The energy E of the 
two superpositions states in b versus the energy bias ε = 2Iq(Φe − Φ0/2) is 
shown. The diagonal dashed black lines show the classical energies. The 
energy-level splitting is Δ at the degeneracy point, ε = 0, and is ν for ε ≠ 0. 
d, The probabilities of the qubit flux pointing up (green) or down (yellow) 
in the ground state versus applied flux are shown.
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of Φe are shown in Fig. 1d. At the degeneracy point, the probability of 
observing either state is ½. As Φe is reduced, the probability of observing 
!    〉 increases while that of observing !    〉 decreases.

The first observation of quantum superposition in a flux qubit was 
made spectroscopically. The state of the flux qubit is measured with 
a d.c. superconducting quantum interference device (SQUID)14. This 
device consists of two Josephson junctions, each with critical current I0, 
connected in parallel on a superconducting loop of inductance L. The 
critical current of the SQUID Ic(Φs) is periodic in the externally applied 
magnetic flux Φs with period Φ0. In the limit βL ≡ 2LI0/Φ0 << 1 in which 
the Josephson inductance dominates the geometrical inductance, the 
critical current for Φs = (m + ½)Φ0 (m is an integer) is reduced to almost 
zero, and the flux dependence of the critical current takes the approxi-
mate form14 Ic(Φs) ≈ 2I0!cos(πΦs/Φ0)!. Thus, by biasing the SQUID with a 
constant magnetic flux near Φ0/2, and measuring the critical current, the 
changes in flux produced by a nearby qubit can be measured with high 
sensitivity. In most experiments with qubits, a pulse of current is applied 
to the SQUID, which either remains in the zero-voltage state or makes 
a transition to the voltage state, producing a voltage 2∆s/e. Because its 
current–voltage characteristic is hysteretic, the SQUID remains at this 
voltage until the current bias has been removed, allowing researchers 
to determine whether the SQUID has switched. For sufficiently small 
current pulses, the probability of the SQUID switching is zero, whereas 
the probability is one for sufficiently large pulses. The switching event 
is a stochastic process and needs to be repeated many times for the flux 
in the SQUID to be measured accurately.

The first step in spectroscopic observation of quantum superposition is 
to determine the height of the current pulse at which the SQUID switches 
— with, for example, a probability of ½ — as a function of Φe over a narrow 
range (perhaps ± 5mΦ0). Subsequently, a pulse of microwave flux is applied 
at frequency fm, which is of sufficient amplitude and duration to equalize 
the populations of the ground state and first excited state when the energy-
level splitting difference ν = hfm. Assuming that !    〉 is measured, then, on 
resonance, there will be a peak in the switching probability for Φe < Φ0/2 
and a corresponding dip for Φe > Φ0/2. An example of these results11,15 is 
shown in Fig. 2. The configuration of the qubit and the SQUID is shown 
in Fig. 2a, and the peaks and dips in the amplitude of the switching current 

Experiments on superconducting qubits are challenging. Most 
superconducting qubits are created by using electron-beam 
lithography, need millikelvin temperatures and an ultralow-noise 
environment to operate, and can be studied only by using very sensitive 
measurement techniques. 

Superconducting qubits generally require Josephson junctions 
with dimensions of the order of 0.1 × 0.1 µm2 — corresponding to a 
self-capacitance of about 1 fF — and are patterned by using shadow 
evaporation and electron-beam lithography79; an exception is the phase 
qubit, which typically has a junction of 1 × 1 µm2

 
and can be patterned 

photolithographically. The Josephson junctions are usually Al–AlxOy–Al 
(where x ≤ 2 and y ≤ 3), and the oxidation must be controlled to yield 
relatively precise values of Ej and Ec. Because qubit frequencies are 
usually 5–10 GHz (which corresponds to 0.25–0.5 K), the circuits are 
operated in dilution refrigerators, typically at temperatures of 
10–30 mK, to minimize thermal population of the upper state. 

Great efforts are made to attenuate external electrical and magnetic 
noise. The experiment is invariably enclosed in a Faraday cage — either 
a shielded room or the metal Dewar of the refrigerator with a contiguous 
metal box on top. The electrical leads that are connected to the qubits 
and their read-out devices are heavily filtered or attenuated. For 
example, lines carrying quasistatic bias currents usually have multiple 
low-pass filters at the various temperature stages of the refrigerator. 
These include both inductor–capacitor and resistor–capacitor filters that 
operate up to a few hundred megahertz, as well as wires running through 
copper powder, which results in substantial loss at higher frequencies5. 
The overall attenuation is typically 200 dB. Finally, the read-out process 
for probing a quantum system is very delicate.

Box 2 | Experimental issues with superconducting qubits

Figure 1 | The theory underlying flux qubits. a, Flux qubits consist of a 
superconducting loop interrupted by either one or three (shown) Josephson 
junctions. The two quantum states are magnetic flux Φ pointing up !    〉 
and Φ pointing down !    〉 or, equivalently, supercurrent Iq circulating in the 
loop anticlockwise and Iq circulating clockwise. b, The double-well potential 
(black) versus total flux Φ contained in a flux qubit is shown. The two wells 
are symmetrical when the externally applied magnetic flux Φe is (n + ½)Φ0, 
where n is an integer (n = 0 in this case). The coloured curves are the 
eigenfunctions (probability amplitudes) for the ground state (symmetrical; 
red) and first excited state (antisymmetrical; blue). c, The energy E of the 
two superpositions states in b versus the energy bias ε = 2Iq(Φe − Φ0/2) is 
shown. The diagonal dashed black lines show the classical energies. The 
energy-level splitting is Δ at the degeneracy point, ε = 0, and is ν for ε ≠ 0. 
d, The probabilities of the qubit flux pointing up (green) or down (yellow) 
in the ground state versus applied flux are shown.
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versus applied flux are shown in Fig. 2b for a succession of microwave fre-
quencies. As expected, the difference in the applied flux at which the peaks 
and dips appear, 2∆Φres, becomes greater as the microwave frequency 
increases. The microwave frequency versus ∆Φres is shown in Fig. 2c. 
The data have been fitted to equation (4) with Iq = (½)dν/dΦe in the limit 
ν >> ∆, using ∆ as a fitting parameter. The data reveal the existence of an 
anticrossing (that is, an avoided crossing) at Φe = Φ0/2.

Charge qubits
A charge qubit (also known as a Cooper-pair box) is shown in Fig. 3a, b. 
The key component is a tiny superconducting island that is small 
enough that the electrostatic charging energy required to place a charge 

of 2e on the island at zero voltage, (2e)2/2CΣ, is much greater than the 
thermal energy kBT (where CΣ = Cg + Cj is the total capacitance). For 
T = 1 K, this requires CΣ to be much less than 1 fF. The Cooper-pair box 
is connected to ground by a gate capacitance Cg in series with a potential 
Vg and by a small Josephson junction with Ej << Ec. Given their weak 
connection to the ‘outside world’, the number of Cooper pairs on the 
island is a discrete variable n. The qubit states correspond to adjacent 
Cooper-pair number states !n〉 and !n + 1〉.

To understand how to control a single Cooper pair, it is useful to first 
examine the electrostatic problem with an infinite junction resistance 
(Ej = 0). The total electrostatic energy of the circuit is Ech = (2e2/Cg)(n − ng)2, 
where ng = CgVg/2e (representing the gate voltage in terms of the gate 
charge, namely the polarization charge that the voltage induces on the 
gate capacitor). Although n is an integer, ng is a continuous variable. Ech 
versus ng is shown in Fig. 3c for several values of n. It should be noted that 
the curves for n and n + 1 cross at ng = n + ½, the charge degeneracy point. 
At this point, the gate polarization corresponds to half a Cooper pair for 
both charge basis states.

By restoring the Josephson coupling to a small value, the behaviour 
close to these crossing points is modified. The Josephson junction 
allows Cooper pairs to tunnel onto the island one by one. The result-
ant coupling between neighbouring charge states !n〉 and !n + 1〉 makes 
the quantum superposition of charge eigenstates analogous to the 
superposition of flux states in equation (3) (identifying !    〉 = !n〉 and 
!    〉 = !n + 1〉). The next excited charge state is higher in energy by Ec 
and can safely be neglected. At the charge degeneracy point, where the 
Josephson coupling produces an avoided crossing, the symmetrical and 
antisymmetrical superpositions are split by an energy Ej. By contrast, 
far from this point, Ec >> Ej, and the eigenstates are very close to being 
charge states. Again, the energy level structure is analogous to that of 
flux qubits, with ∆ replaced with Ej and ε with Ec × (ng − n − ½). Similarly, 
the probabilities of measuring the ground state or excited state depend 
on the gate voltage rather than the applied flux. 

To make the qubit fully tunable, the Josephson junction is usually 
replaced by a d.c. SQUID with low inductance (βL << 1). Ej is then 
adjusted by applying the appropriate magnetic flux, which is kept con-
stant throughout the subsequent measurements.

The read-out of a charge qubit involves detecting the charge on the 
island to a much greater accuracy than 2e. This is accomplished by using 
a single-electron transistor (SET), a sensitive electrometer16. The SET 
(Fig. 3d), also based on a tiny island, is connected to two superconduct-
ing leads by two Josephson junctions. When the voltages across both 
junctions are close to the degeneracy point (ng = n + ½), charges cross 
the junctions to produce a net current flow through the SET. Thus, the 
current near the degeneracy points depends strongly on the gate volt-
age (Fig. 3c). Capacitively coupling the Cooper-pair-box island to the 
SET island makes a contribution to the SET gate voltage so that the SET 
current strongly depends on the Cooper-pair-box state. This scheme 
converts the measurement of charge into a measurement of charge trans-
port through a SET. In fact, for small Josephson junctions, this charge 
transport is usually dissipative, because the phase coherence is destroyed 
by environmental fluctuations. Thus, the read-out actually involves 
measuring the resistance of the SET, which depends on the state of the 
Cooper-pair box. The preferred read-out device is a radio-frequency 
SET17, in which a SET is embedded in a resonant circuit. Thus, the Q 
of the resonant circuit is determined by the resistance of the SET and 
ultimately by the charge on the Cooper-pair box. A pulse of microwaves 
slightly detuned from the resonant frequency is applied to the radio-
frequency SET, and the phase of the reflected signal enables the state of 
the qubit to be determined. 

Many of the initial studies of superconducting qubits involved charge 
qubits. That crossing is avoided at the degeneracy point was first shown 
spectroscopically by studying a charge qubit9, and charge measurements 
revealed the continuous, quantum-rounded form of the transition 
between quantum states18. The coherent oscillations that occur with 
time at this avoided energy-level crossing were also first discovered by 
studying a charge qubit19.

Figure 2 | Experimental properties of flux qubits. a, The configuration of the 
original three-junction flux qubit is shown. Arrows indicate the current flow 
in the two qubit states (green denotes !    〉, and yellow denotes !    〉). Scale bar, 
3 μm. (Image courtesy of C. H. van der Wal, Rijksuniversiteit Groningen, 
the Netherlands). b, Radiation of microwave frequency fm induces resonant 
peaks and dips in the switching current Isw with respect to the externally 
applied magnetic flux Φe normalized to the flux quantum Φ0. Frequencies 
range from 9.711 GHz to 0.850 GHz. Tick marks on the y axis show steps 
of 0.4 nA. (Panel reproduced, with permission, from ref. 15.) c, Microwave 
frequency fm is plotted against half of the separation in magnetic flux, 
∆Φres, between the peak and the dip at each frequency. The line is a linear 
fit through the data at high frequencies and represents the classical energy. 
The inset is a magnified view of the lower part of the graph; the curved line 
in the inset is a fit to equation (4). The deviation of the data points from the 
straight line demonstrates quantum coherence of the !    〉 and !    〉 flux states. 
(Panel reproduced, with permission, from ref. 15.)
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• Superconducting loop interrupted by Josephson junctions
• Quantum states of electron current in two directions
   (with different magnetic flux) constitute a qubit



Charge qubit

Cooper-pair boxes are particularly sensitive to low-frequency noise 
from electrons moving among defects (see the section ‘Decoherence’) 
and can show sudden large jumps in ng. The development of more 
advanced charge qubits such as the transmon20 and quantronium12 has 
greatly ameliorated this problem. The transmon is a small Cooper-
pair box that is made relatively insensitive to charge by shunting the 
Josephson junction with a large external capacitor to increase Ec and by 
increasing the gate capacitor to the same size. Consequently, the energy 
bands of the type shown in Fig. 3c are almost flat, and the eigenstates are 
a combination of many Cooper-pair-box charge states. For reasons that 
will be discussed later (see the section ‘Decoherence’), the transmon is 
thus insensitive to low-frequency charge noise at all operating points. 
At the same time, the large gate capacitor provides strong coupling to 
external microwaves even at the level of a single photon, greatly increas-
ing the coupling for circuit quantum electrodynamics (QED) (see the 
section ‘Quantum optics on a chip’).

The principle by which quantronium operates is shown in Fig. 4a, 
and an actual circuit is shown in Fig. 4b. The Cooper-pair box involves 
two Josephson junctions, with a capacitance Cg connected to the island 
separating them. The two junctions are connected across a third, larger, 
junction, with a higher critical current, to form a closed superconduct-
ing circuit to which a magnetic flux Φe is applied. The key to eliminating 
the effects of low-frequency charge and flux noise is to maintain the 
qubit at the double degeneracy point at which the two qubit states are 
(to first order) insensitive to these noise sources. To achieve insensi-
tivity to charge noise, the qubit is operated at ng = ½, where the energy 
levels have zero slope and the energy-level splitting is Ej (Fig. 3c). 
Insensitivity to flux noise is achieved by applying an integer number 
of half-flux quanta to the loop. The success of this optimum working 
point has been elegantly shown experimentally21. The insensitivity to 
both flux and charge implies, however, that the two states of the qubit 
cannot be distinguished at the double degeneracy point. To measure 
the qubit state, a current pulse that moves the qubit away from the flux 
degeneracy point is applied to the loop, and this produces a clockwise 
or anticlockwise current in the loop, depending on the state of the qubit. 
The direction of the current is determined by the third (read-out) junc-
tion: the circulating current either adds to or subtracts from the applied 
current pulse, so the read-out junction switches out of the zero-volt-
age state at a slightly lower or slightly higher value of the bias current, 
respectively. Thus, the state of the qubit can be inferred by measur-
ing the switching currents. With the advent of quantronium, much 
longer relaxation and decoherence times can be achieved than with a 
conventional Cooper-pair box.

Although this switching read-out scheme is efficient, it has two 
major drawbacks. First, the resultant high level of dissipation destroys 
the quantum state of the qubit, making sequential measurements of 
the state impossible. Second, the temperature of the read-out junction 
and substrate increase because of the energy that is deposited while the 
SQUID is in the voltage state — typically for 1 µs — and the equilibrium 
is not restored for ~1 ms. This limits the rate at which measurements can 
be made to ~1 kHz, resulting in long data-acquisition times.

These drawbacks have been overcome by the introduction of the 
Josephson bifurcation amplifier (JBA)22, a particularly powerful read-
out device in which there is no dissipation because the junction remains 
in the zero-voltage state (Fig. 4c). The JBA exploits the nonlinearity of 
the Josephson junction when a capacitor is connected across it, resulting 
in the formation of a resonant (or tank) circuit. When small-amplitude 
microwave pulses are applied to the resonant circuit, the amplitude and 
phase of the reflected signal are detected, with the signal strength boosted 
by a cryogenic amplifier. From this measurement, the resonant frequency 
of the tank circuit can be determined, then the inductance of the junction 
— which depends on the current flowing through it — and, finally, the 
state of the quantronium. For larger-amplitude microwaves, however, the 
behaviour of the circuit is strongly nonlinear, with the resonance frequency 
decreasing as the amplitude increases. In particular, strong driving at fre-
quencies slightly below the plasma frequency leads to a bistability: a weak, 
off-resonance lower branch during which the particle does not explore the 
nonlinearity, and a high-amplitude response at which frequency matches 
the driving frequency (Fig. 4d). The two qubit states can be distinguished 
by choosing driving frequencies and currents that cause the JBA to switch 
to one response or the other, depending on the qubit state. This technique 
is extremely fast and, even though it is based on a switching process, it 
never drives the junction into the voltage state. Furthermore, the JBA 
remains in the same state after the measurement has been made.

The JBA has been shown to approach the quantum non-demolition 
(QND) limit22. This limit is reached when the perturbation of the quan-
tum state during the measurement does not go beyond that required by 
the measurement postulate of quantum mechanics, so repeated meas-
urements of the same eigenstate lead to the same outcome23. Reaching 
the QND limit is highly desirable for quantum computing.

A similar scheme that approaches the QND limit has been imp-
lemented for the flux qubit, with the single Josephson junction replaced 
by a read-out SQUID24. Dispersive read-out for a flux qubit has also 
been achieved by inductively coupling a flux qubit to the inductor of a 
resonant circuit and then measuring the flux state from the shift in the 
resonance frequency 25.

Figure 3 | Charge qubits. a, A single Cooper-pair-box (SCB) circuit is 
shown. The superconducting island is depicted in brown and the junction 
in blue. Ej and Cj are the Josephson coupling energy and self-capacitance, 
respectively, and n is the number of Cooper pairs on the island, which 
is coupled to a voltage source with voltage Vg by way of a capacitor with 
capacitance Cg. (Panel reproduced, with permission, from ref. 28.) 
b, A micrograph of a Cooper-pair box coupled to a single-electron 
transistor (SET) is shown. Scale bar, 1 μm. (Panel reproduced, with 
permission, from ref. 78.) c, Black curves show the energy of the Cooper-
pair box as a function of the scaled gate voltage ng = CgVg/2e for different 
numbers (n) of excess Cooper pairs on the island. The parabola on the 
far left corresponds to n = 0 and the central parabola to n = 1. Dashed 

lines indicate the contribution of the charging energy Ech(n, ng) alone. The 
energy-level splitting at ng = ½ is Ej. Red curves show the current I through 
the SET as a function of ng. Transport is possible at the charge degeneracy 
points, where the gate strongly modulates the current. (Panel reproduced, 
with permission, from ref. 28.) d, A charge qubit with two junctions (left) 
coupled to a SET biased to a transport voltage Vtr (right) is shown. The 
critical current of the junctions coupled to the island is adjusted by means 
of an externally applied magnetic flux Фe. The gate of the SET is coupled to 
an externally controlled charge induced on the capacitor with capacitance 
Cg 

SET by the voltage Vg 
SET, as well as to the qubit charge by way of the 

interaction capacitance Cint. (Panel reproduced, with permission, from 
ref. 28.)
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• Superconductor connected to a Cooper pair box
• Qubit state is determined by the (quantised) number of cooper pairs in the box
• Control via electrical gating

Cooper-pair boxes are particularly sensitive to low-frequency noise 
from electrons moving among defects (see the section ‘Decoherence’) 
and can show sudden large jumps in ng. The development of more 
advanced charge qubits such as the transmon20 and quantronium12 has 
greatly ameliorated this problem. The transmon is a small Cooper-
pair box that is made relatively insensitive to charge by shunting the 
Josephson junction with a large external capacitor to increase Ec and by 
increasing the gate capacitor to the same size. Consequently, the energy 
bands of the type shown in Fig. 3c are almost flat, and the eigenstates are 
a combination of many Cooper-pair-box charge states. For reasons that 
will be discussed later (see the section ‘Decoherence’), the transmon is 
thus insensitive to low-frequency charge noise at all operating points. 
At the same time, the large gate capacitor provides strong coupling to 
external microwaves even at the level of a single photon, greatly increas-
ing the coupling for circuit quantum electrodynamics (QED) (see the 
section ‘Quantum optics on a chip’).

The principle by which quantronium operates is shown in Fig. 4a, 
and an actual circuit is shown in Fig. 4b. The Cooper-pair box involves 
two Josephson junctions, with a capacitance Cg connected to the island 
separating them. The two junctions are connected across a third, larger, 
junction, with a higher critical current, to form a closed superconduct-
ing circuit to which a magnetic flux Φe is applied. The key to eliminating 
the effects of low-frequency charge and flux noise is to maintain the 
qubit at the double degeneracy point at which the two qubit states are 
(to first order) insensitive to these noise sources. To achieve insensi-
tivity to charge noise, the qubit is operated at ng = ½, where the energy 
levels have zero slope and the energy-level splitting is Ej (Fig. 3c). 
Insensitivity to flux noise is achieved by applying an integer number 
of half-flux quanta to the loop. The success of this optimum working 
point has been elegantly shown experimentally21. The insensitivity to 
both flux and charge implies, however, that the two states of the qubit 
cannot be distinguished at the double degeneracy point. To measure 
the qubit state, a current pulse that moves the qubit away from the flux 
degeneracy point is applied to the loop, and this produces a clockwise 
or anticlockwise current in the loop, depending on the state of the qubit. 
The direction of the current is determined by the third (read-out) junc-
tion: the circulating current either adds to or subtracts from the applied 
current pulse, so the read-out junction switches out of the zero-volt-
age state at a slightly lower or slightly higher value of the bias current, 
respectively. Thus, the state of the qubit can be inferred by measur-
ing the switching currents. With the advent of quantronium, much 
longer relaxation and decoherence times can be achieved than with a 
conventional Cooper-pair box.

Although this switching read-out scheme is efficient, it has two 
major drawbacks. First, the resultant high level of dissipation destroys 
the quantum state of the qubit, making sequential measurements of 
the state impossible. Second, the temperature of the read-out junction 
and substrate increase because of the energy that is deposited while the 
SQUID is in the voltage state — typically for 1 µs — and the equilibrium 
is not restored for ~1 ms. This limits the rate at which measurements can 
be made to ~1 kHz, resulting in long data-acquisition times.

These drawbacks have been overcome by the introduction of the 
Josephson bifurcation amplifier (JBA)22, a particularly powerful read-
out device in which there is no dissipation because the junction remains 
in the zero-voltage state (Fig. 4c). The JBA exploits the nonlinearity of 
the Josephson junction when a capacitor is connected across it, resulting 
in the formation of a resonant (or tank) circuit. When small-amplitude 
microwave pulses are applied to the resonant circuit, the amplitude and 
phase of the reflected signal are detected, with the signal strength boosted 
by a cryogenic amplifier. From this measurement, the resonant frequency 
of the tank circuit can be determined, then the inductance of the junction 
— which depends on the current flowing through it — and, finally, the 
state of the quantronium. For larger-amplitude microwaves, however, the 
behaviour of the circuit is strongly nonlinear, with the resonance frequency 
decreasing as the amplitude increases. In particular, strong driving at fre-
quencies slightly below the plasma frequency leads to a bistability: a weak, 
off-resonance lower branch during which the particle does not explore the 
nonlinearity, and a high-amplitude response at which frequency matches 
the driving frequency (Fig. 4d). The two qubit states can be distinguished 
by choosing driving frequencies and currents that cause the JBA to switch 
to one response or the other, depending on the qubit state. This technique 
is extremely fast and, even though it is based on a switching process, it 
never drives the junction into the voltage state. Furthermore, the JBA 
remains in the same state after the measurement has been made.

The JBA has been shown to approach the quantum non-demolition 
(QND) limit22. This limit is reached when the perturbation of the quan-
tum state during the measurement does not go beyond that required by 
the measurement postulate of quantum mechanics, so repeated meas-
urements of the same eigenstate lead to the same outcome23. Reaching 
the QND limit is highly desirable for quantum computing.

A similar scheme that approaches the QND limit has been imp-
lemented for the flux qubit, with the single Josephson junction replaced 
by a read-out SQUID24. Dispersive read-out for a flux qubit has also 
been achieved by inductively coupling a flux qubit to the inductor of a 
resonant circuit and then measuring the flux state from the shift in the 
resonance frequency 25.

Figure 3 | Charge qubits. a, A single Cooper-pair-box (SCB) circuit is 
shown. The superconducting island is depicted in brown and the junction 
in blue. Ej and Cj are the Josephson coupling energy and self-capacitance, 
respectively, and n is the number of Cooper pairs on the island, which 
is coupled to a voltage source with voltage Vg by way of a capacitor with 
capacitance Cg. (Panel reproduced, with permission, from ref. 28.) 
b, A micrograph of a Cooper-pair box coupled to a single-electron 
transistor (SET) is shown. Scale bar, 1 μm. (Panel reproduced, with 
permission, from ref. 78.) c, Black curves show the energy of the Cooper-
pair box as a function of the scaled gate voltage ng = CgVg/2e for different 
numbers (n) of excess Cooper pairs on the island. The parabola on the 
far left corresponds to n = 0 and the central parabola to n = 1. Dashed 

lines indicate the contribution of the charging energy Ech(n, ng) alone. The 
energy-level splitting at ng = ½ is Ej. Red curves show the current I through 
the SET as a function of ng. Transport is possible at the charge degeneracy 
points, where the gate strongly modulates the current. (Panel reproduced, 
with permission, from ref. 28.) d, A charge qubit with two junctions (left) 
coupled to a SET biased to a transport voltage Vtr (right) is shown. The 
critical current of the junctions coupled to the island is adjusted by means 
of an externally applied magnetic flux Фe. The gate of the SET is coupled to 
an externally controlled charge induced on the capacitor with capacitance 
Cg 

SET by the voltage Vg 
SET, as well as to the qubit charge by way of the 

interaction capacitance Cint. (Panel reproduced, with permission, from 
ref. 28.)
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• Readout via a single electron transistor
• Also coupling to microwave fields
   (cavity QED)



Measuring the times T1, T2 and T2* provides an important initial 
charac terization of qubit coherence. However, other factors such as 
pulse in accuracy, relaxation during measurement and more complex 
decoherence effects result in measurement errors. A more complete 
measure of a qubit is fidelity, a single number that represents the dif-
ference between the ideal and the actual outcome of the experiment. 
Determining the fidelity involves quantum-process tomography 
(a repeated set of state tomographies), which characterizes a quantum-
mechanical process for all possible initial states. In a Ramsey-fringe 
tomography experiment, Matthias Steffen et al.31

 
found a fidelity of 

~80%, where 10% of the loss was attributed to read-out errors and 
another 10% to pulse-timing uncertainty.

Decoherence 
Superconducting qubits are macroscopic, so — along the lines of 
Schrödinger’s cat — they could be expected to be very sensitive to 
de coherence. In fact, given the unique properties of the superconducting 
state, careful engineering has led to remarkable increases in decoherence 
times compared with those of early devices.

Ideally, each type of qubit is described by a single degree of freedom. 
The central challenge is to eliminate all other degrees of freedom. In broad 
terms, there are two classes of decohering element: extrinsic and intrinsic. 
Obvious extrinsic sources include electromagnetic signals from radio and 
television transmitters; these can generally be eliminated by using careful 
shielding and enough broadband filters. A more challenging extrinsic 
source to exclude is the local electromagnetic environment: for exam-
ple, contributions from the leads that are coupled to read-out devices or 
are used to apply flux or charge biases. These leads allow great flexibility 
in control of the system at the expense of considerable coupling to the 
environ ment. This issue was recognized in the first proposals of macro-
scopic quantum coherence and largely motivated the Caldeira–Leggett 
theory of quantum dissipation6. This theory maps any linear dissipation 
onto a bath of harmonic oscillators. The effects of these oscillators can 
be calculated from the Johnson–Nyquist noise that is generated by the 
complex impedance of the environment. In the weak-damping regime, 
both T1 and τϕ can be computed directly from the power spectrum of this 
noise, and then the impedance can be engineered to minimize decoher-
ence28,29. The experimental difficulty is to ensure that the complex imp-
edances ‘seen’ by the qubit are high over a broad bandwidth, for example, 

0–10 GHz. It is particularly difficult to avoid resonances over such a broad 
range of frequencies. Clever engineering has greatly reduced this source of 
decoherence, but it would be optimistic to consider that this problem has 
been completely solved.

The main intrinsic limitation on the coherence of superconducting 
qubits results from low-frequency noise, notably ‘1/f noise’ (in which 
the spectral density of the noise at low frequency f scales as 1/f α, where 
α is of the order of unity). In the solid state, many 1/f noise sources are 
well described by the Dutta–Horn model as arising from a uniform dis-
tribution of two-state defects32. Each defect produces random telegraph 
noise, and a superposition of such uncorrelated processes leads to a 1/f 
power spectrum. There are three recognized sources of 1/f noise. The 
first is critical-current fluctuations, which arise from fluctuations in the 
transparency of the junction caused by the trapping and untrapping of 
electrons in the tunnel barrier33. All superconducting qubits are subject 
to dephasing by this mechanism. The slow fluctuations modulate energy-
level splitting, even at the degeneracy point, so each measurement is 
made on a qubit with a slightly different frequency. The resultant phase 
errors lead to decoherence.

The second source of 1/f noise is charge fluctuations, which arise 
from the hopping of electrons between traps on the surface of the super-
conducting film or the surface of the substrate. This motion induces 
charges onto the surface of nearby superconductors. This decoherence 
mechanism is particularly problematic for charge qubits, except at the 
degeneracy point, where the qubits are (to first order) insensitive. If the 
value of Ec/Ej increases, however, the energy bands (Fig. 3c) become flat-
ter, and the qubit is correspondingly less sensitive to charge noise away 
from the degeneracy point. This mechanism underlies the substantially 
increased values of T2 in the transmon20.

The third source of 1/f noise is magnetic-flux fluctuations. Although 
such fluctuations were first characterized more than 20 years ago34, the 
mechanism by which these occur remained obscure until recently. It 
is now thought that flux noise arises from the fluctuations of unpaired 
electron spins on the surface of the superconductor or substrate35,36, but 
the details of the mechanism remain controversial. Flux noise causes 
decoherence in flux qubits, except at the degeneracy point, as well as in 
phase qubits, which have no degeneracy point. The increased value of 
T2 in quantronium results from its insensitivity to both flux noise and 
charge noise at the double degeneracy point.

Figure 6 | Qubit manipulation in the time 
domain. a, The Bloch sphere is depicted, 
with an applied static magnetic field B0 and 
a radio-frequency magnetic field Brf. Any 
given superposition of the six states shown is 
represented by a unique point on the surface 
of the sphere. b, Rabi oscillations in a flux 
qubit are shown. The probability psw that the 
detector (SQUID) switches to the normal state 
versus pulse length is shown, and the inset is a 
magnification of the boxed region, showing that 
the dense traces are sinusoidal oscillations. As 
expected, the excited-state population oscillates 
under resonant driving. (Panel reproduced, with 
permission, from ref. 40.) c, Ramsey fringes in 
a phase qubit are shown. Coherent oscillations 
of the switching probability p1 between two 
detuned π/2 pulses is shown as a function of 
pulse separation. (Panel reproduced, with 
permission, from ref. 31.) d, The charge echo in 
a Cooper-pair box is shown as a function of the 
time difference δt = t1 − t2, where t1 is the time 
between the initial π/2 pulse and the π pulse, 
and t2 is the time between the π pulse and the 
second π/2 pulse. The echo peaks at δt = 0. (Panel 
reproduced, with permission, from ref. 39.)
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In general, all three low-frequency processes lead to decoherence. 
They do not contribute to relaxation because this process requires an 
exchange of energy with the environment at the energy-level splitting 
frequency of the qubit, which is typically in the gigahertz range. How-
ever, there is strong evidence that charge fluctuations are associated with 
the high-frequency resonators that have been observed, in particular, in 
phase qubits37. Improvements in the quality of the oxide layers that are 
used in the junctions and capacitors have resulted in large reductions in 
the concentration of these high-frequency resonators38.

The strategy of operating a qubit at the optimum point, which was 
first carried out with quantronium but is now applied to all types of 
super conducting qubit (except for phase qubits), has been successful at 
increasing phase-coherence times by large factors. Further substantial 
improvements have resulted from the use of charge- or flux-echo tech-
niques39,40. In NMR, the spin-echo technique removes the inhomogeneous 
broadening that is associated with, for example, variations in magnetic 
field, and hence in the NMR frequency, over the sample. In the case of 
qubits, the variation is in the qubit energy-level splitting frequency from 
measurement to measurement. For some qubits, using a combination 
of echo techniques and optimum point operation has eliminated pure 
dephasing, so decoherence is limited by energy relaxation (T2* = 2T1). In 
general, however, the mechanisms that limit T1 are unknown, although 
resonators that are associated with defects may be responsible36,41. The 
highest reported values of T1, T2* and T2 are listed in Table 1.

Coupled qubits
An exceedingly attractive and unique feature of solid-state qubits in 
general and superconducting qubits in particular is that schemes can 
be implemented that both couple them strongly to each other and 
turn off their interaction in situ by purely electronic means. Because 
the coupling of qubits is central to the architecture of quantum compu-
ters, this subject has attracted much attention, in terms of both theory 
and experiment. In this section, we illustrate the principles of coupled 
qubits in terms of flux qubits and refer to analogous schemes for other 
superconducting qubits.

Because the flux qubit is a magnetic dipole, two neighbouring flux 
qubits are coupled by magnetic dipole–dipole interactions. The coupling 

strength can be increased by having the two qubits use a common line. 
Even stronger coupling can be achieved by including a Josephson junc-
tion in this line to increase the line’s self-inductance (equation (6), Box 1). 
In the case of charge and phase qubits, nearest-neighbour interactions 
are mediated by capacitors rather than inductors. Fixed interaction has 
been implemented for flux, charge and phase qubits42–45. These experi-
ments show the energy levels that are expected for the superposition of 
two pseudospin states: namely, a ground state and three excited states; 
the first and second excited states may be degenerate. The entanglement 
of these states for two phase qubits has been shown explicitly by means of 
quantum-state tomography 46. The most general description (including 
all imperfections) of the qubit state based on the four basis states of the 
coupled qubits is a four-by-four array known as a density matrix. Steffen 
et al.46 carried out a measurement of the density matrix; they prepared a 
system in a particular entangled state and showed that only the correct 
four matrix elements were non-zero — and that their magnitude was in 
good agreement with theory. This experiment is a proof-of-principle 
demonstration of a basic function required for a quantum computer. 
Simple quantum gates have also been demonstrated47,48.

Two flux qubits can be coupled by flux transformers — in essence 
a closed loop of superconductor surrounding the qubits — enabling 
their interaction to be mediated over longer distances. Because the 
superconducting loop conserves magnetic flux, a change in the state 
of one qubit induces a circulating current in the loop and hence a flux 
in the other qubit. Flux transformers that contain Josephson junctions 
enable the interaction of qubits to be turned on and off in situ. One such 
device consists of a d.c. SQUID surrounding two flux qubits49 (Fig. 7a). 
The inductance between the two qubits has two components: that of the 
direct coupling between the qubits, and that of the coupling through 
the SQUID. For certain values of applied bias current (below the critical 
current) and flux, the self-inductance of the SQUID becomes nega-
tive, so the sign of its coupling to the two qubits opposes that of the 
direct coupling. By choosing parameters appropriately, the inductance 
of the coupled qubits can be designed to be zero or even have its sign 
reversed. This scheme has been implemented by establishing the val-
ues of SQUID flux and bias current and then using microwave manip-
ulation and measuring the energy-level splitting of the first and second 
excited states50 (Fig. 7b). A related design — tunable flux–flux coupling 
mediated by an off-resonant qubit — has been demonstrated51, and 
tunable capacitors have been proposed for charge qubits52.

Another approach to variable coupling is to fix the coupling strength 
geometrically and tune it by frequency selection. As an example, we 
consider two magnetically coupled flux qubits biased at their degeneracy 
points. If each qubit is in a superposition of eigenstates, then its magnetic 
flux oscillates and the coupling averages to zero — unless both qubits 
oscillate at the same frequency, in which case the qubits are coupled. This 
phenomenon is analogous to the case of two pendulums coupled by a 
weak spring. Even if the coupling is extremely weak, the pendulums will 
be coupled if they oscillate in antiphase at exactly the same frequency.

Implementing this scheme is particularly straightforward for two 
phase qubits because their frequencies can readily be brought in and 
out of resonance by adjusting the bias currents37. For other types of qubit, 
the frequency at the degeneracy point is set by the as-fabricated param-
eters, so it is inevitable that there will be variability between qubits. As 
a result, if the frequency difference is larger than the coupling strength, 
the qubit–qubit interaction cancels out at the degeneracy point. Several 
pulse sequences have been proposed to overcome this limitation53–55, 
none of which has been convincingly demonstrated as yet. The two-
qubit gate demonstrations were all carried out away from the optimum 
point, where the frequencies can readily be matched.

On the basis of these coupling schemes, several architectures have 
been proposed for scaling up from two qubits to a quantum computer. 
The central idea of most proposals is to couple all qubits to a long central 
coupling element, a ‘quantum bus’56,57 (Fig. 8), and to use frequency selec-
tion to determine which qubits can be coupled56–60. This scheme has been 
experimentally demonstrated. As couplers become longer, they become 
transmission lines that have electromagnetic modes. For example, two 

Figure 7 | Controllably coupled flux qubits. a, Two flux qubits are shown 
surrounded by a d.c. SQUID. The qubit coupling strength is controlled 
by the pulsed bias current Ipb that is applied to the d.c. SQUID before 
measuring the energy-level splitting between the states !1〉 and !2〉. b, The 
filled circles show the measured energy-level splitting of the two coupled 
flux qubits plotted against Ipb. The solid line is the theoretical prediction, 
fitted for Ipb; there are no fitted parameters for the energy-level splitting. 
Error bars, ±1σ. (Panels reproduced, with permission, from ref. 50.) 
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Table 1 | Highest reported values of T1, T2* and T2

Qubit T1 (μs) T2* (μs) T2 (μs) Source

Flux 4.6 1.2 9.6 Y. Nakamura, personal communication

Charge 2.0 2.0 2.0 ref. 77

Phase 0.5 0.3 0.5 J. Martinis, personal communication 
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For a review, see
J. Clarke and F. K. Wilhelm, 
Nature 453, 1031 (2008)



Other systems / hybrid systems



NMR:
• First system with gate operations on multiple qubits
• Demonstrated factorization of 15 with Shor’s algorithm
• Difficulties in scaling for liquid phase (limited by molecule size)
• Somewhat replaced by NMR in solid state qubits

• See Nielsen & Chuang for a detailed summary

Optical qubits
• Polarisation or two-rail encoding, single qubit gates by linear elements
• Probabalistic quantum gates, measurement-based entanglement
• Optical C-Not gate (O’Brien et al, Nature 2003)



GS Research talk, Mar 30th 2012!

Hybrid quantum systems 

Neutral atoms in lattices and optical 
cavities!

B. E. Kane, Nature (1998)!

Combine advantages of different physical quantum systems, e.g. fast (but decohering) qubits with 
slow (but protected) qubits; or matter qubits (robust, strongly interacting) with flying qubits (fragile, 
weakly interacting) !!

Superconducting qubits with 
microwave cavity photons! Diamond color centers with 

microwave cavity photons!

Electron and nuclear spins in 
semiconductors!

Hybrid systems

Topological qubits
• Protected quantum memories based on non-trivial state topology
   (solid state, e.g., groups of J. Levy/S. Frolov at Pitt)


