
Chapter 8

Stochastic Histories

8.1 Introduction

Despite the fact that classical mechanics employs deterministic dynamical laws, random dynamical
processes often arise in classical physics, as well as in everyday life. A stochastic or random process
is one in which states-of-affairs at successive times are not related to one another by deterministic
laws, and instead probability theory is employed to describe whatever regularities exist. Tossing a
coin or rolling a die several times in succession are examples of stochastic processes in which the
previous history is of very little help in predicting what will happen in the future. The motion of
a baseball is an example of a stochastic process which is to some degree predictable using classical
equations of motion that relate its acceleration to the total force acting upon it. However, a lack of
information about its initial state (e.g., whether it is spinning), its precise shape, and the condition
and motion of the air through which it moves limits the precision with which one can predict its
trajectory.

The Brownian motion of a small particle suspended in a fluid and subject to random bom-
bardment by the surrounding molecules of fluid is a well-studied example of a stochastic process
in classical physics. Whereas the instantaneous velocity of the particle is hard to predict, there
is a probabilistic correlation between successive positions, which can be predicted using stochastic
dynamics and checked by experimental measurements. In particular, given the particle’s position at
a time t, it is possible to compute the probability that it will have moved a certain distance by the
time t+∆t. The stochastic description of the motion of a Brownian particle uses the deterministic
law for the motion of an object in a viscous fluid, and assumes that there is, in addition, a random
force or “noise” which is unpredictable, but whose statistical properties are known.

In classical physics the need to use stochastic rather than deterministic dynamical processes
can be blamed on ignorance. If one knew the precise positions and velocities of all the molecules
making up the fluid in which the Brownian particle is suspended, along with the same quantities
for the molecules in the walls of the container and inside the Brownian particle itself, it would in
principle be possible to integrate the classical equations of motion and make precise predictions
about the motion of the particle. Of course, integrating the classical equations of motion with
infinite precision is not possible. Nonetheless, in classical physics one can, in principle, construct
more and more refined descriptions of a mechanical system, and thereby continue to reduce the
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noise in the stochastic dynamics in order to come arbitrarily close to a deterministic description.
Knowing the spin imparted to a baseball by the pitcher allows a more precise prediction of its future
trajectory. Knowing the positions and velocities of the fluid molecules inside a sphere centered at a
Brownian particle makes it possible to improve one’s prediction of its motion, at least over a short
time interval.

The situation in quantum physics is similar, up to a point. A quantum description can be made
more precise by using smaller, i.e., lower-dimensional subspaces of the Hilbert space. However, while
the refinement of a classical description can go on indefinitely, one reaches a limit in the quantum
case when the subspaces are one-dimensional, since no finer description is possible. However, at this
level quantum dynamics is still stochastic: there is an irreducible “quantum noise” which cannot be
eliminated, even in principle. To be sure, quantum theory allows for a deterministic (and thus noise
free) unitary dynamics, as discussed in the previous chapter. But there are many processes in the
real world which cannot be discussed in terms of purely unitary dynamics based upon Schrödinger’s
equation. Consequently, stochastic descriptions are a fundamental part of quantum mechanics in
a sense which is not true in classical mechanics.

In this chapter we focus on the kinematical aspects of classical and quantum stochastic dy-
namics: how to construct sample spaces and the corresponding event algebras. As usual, classical
dynamics is simpler and provides a valuable guide and useful analogies for the quantum case, so var-
ious classical examples are taken up in Sec. 8.2. Quantum dynamics is the subject of the remainder
of the chapter.

8.2 Classical Histories

Consider a coin which is tossed three times in a row. The eight possible outcomes of this experiment
are HHH, HHT , HTH, . . .TTT : heads on all three tosses, heads the first two times and tails
the third, and so forth. These eight possibilities constitute a sample space as that term is used
in probability theory, see Sec. 5.1, since the different possibilities are mutually exclusive, and one
and only one of them will occur in any particular experiment in which a coin is tossed three times
in a row. The event algebra (Sec. 5.1) consists of the 28 subsets of elements in the sample space:
the empty set, HHH by itself, the pair {HHT, TTT}, and so forth. The elements of the sample
space will be referred to as histories, where a history is to be thought of as a sequence of events at

successive times. Members of the event algebra will also be called “histories” in a somewhat looser
sense, or compound histories if they include two or more elements from the sample space.

As a second example, consider a die which is rolled f times in succession. The sample space
consists of 6f possibilities {s1, s2, . . . , sf}, where each sj takes some value between 1 and 6.

A third example is a Brownian particle moving in a fluid and observed under a microscope at
successive times t1, t2, . . . tf . The sequence of positions r1, r2, . . . rf is an example of a history,
and the sample space consists of all possible sequences of this type. Since any measuring instrument
has finite resolution, one can, if one wants, suppose that for the purpose of recording the data the
region inside the fluid is thought of as divided up into a collection of small cubical cells, with rj

the label of the cell containing the particle at time tj .

A fourth example is a particle undergoing a random walk in one dimension, a sort of “toy
model” of Brownian motion. Assume that the location of the particle or random walker, denoted
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by s, is an integer in the range
−Ma ≤ s ≤Mb. (8.1)

One could allow s to be any integer, but using the limited range (8.1) results in a finite sample
space of M = Ma + Mb + 1 possibilities at any given time. At each time step the particle either
remains where it is, or hops to the right or to the left. Hence a history of the particle’s motion
consists in giving its positions at a set of times t = 0, 1, . . . f as a sequence of integers

s = (s0, s1, s2, . . . sf ), (8.2)

where each sj falls in the interval (8.1). The sample space of histories consists of the M f+1 different
sequences s. (Letting s0 rather than s1 be the initial position of the particle is of no importance; the
convention used here agrees with that in the next chapter.) One could employ histories extending
to t = ∞, but that would mean using an infinite sample space.

This sample space can be thought of as produced by successively refining an initial, coarse
sample space in which s0 takes one of M possible values, and nothing is said about what happens
at later times. Histories involving the two times t = 0 and 1 are produced by taking a point in this
initial sample space, say s0 = 3, and “splitting it up” into two-time histories of the form (3, s1),
where s1 can take on any one of the M values in (8.1). Given a point, say (3, 2), in this new sample
space, it can again be split up into elements of the form (3, 2, s2), and so forth. Note that any
history involving less than n+ 1 times can be thought of as a compound history on the full sample
space. Thus (3, 2) consists of all sequences s for which s0 = 3 and s1 = 2. Rather than starting
with a coarse sample space of events at t = 0, one could equally well begin with a later time, such
as all the possibilities for s2 at t = 2, and then refine this space by including additional details at
both earlier and later times.

8.3 Quantum Histories

A quantum history of a physical system is a sequence of quantum events at successive times, where
a quantum event at a particular time can be any quantum property of the system in question. Thus
given a set of times t1 < t2 < · · · tf , a quantum history is specified by a collection of projectors
(F1, F2, . . . Ff ), one projector for each time. It is convenient, both for technical and for conceptual
reasons, to suppose that the number f of distinct times is finite, though it might be very large. It is
always possible to add additional times to those in the list t1 < t2 < · · · tf in the manner indicated
in Sec. 8.4. Sometimes the initial time will be denoted by t0 rather than t1.

For a spin-half particle, ([z+], [x+]) is an example of a history involving 2 times, while
([z+], [x+], [z+]) is an example involving 3 times.

As a second example, consider a harmonic oscillator. A possible history with 3 different times
is the sequence of events

F1 = [φ1] + [φ2], F2 = [φ1], F3 = X, (8.3)

where [φn] is the projector on the energy eigenstate with energy (n+1/2)h̄ω, and X is the projector
defined in (4.20) corresponding to the position x lying in the interval x1 ≤ x ≤ x2. Note that the
projectors making up a history do not have to project onto a one-dimensional subspace of the Hilbert
space. In this example, F1 projects onto a two-dimensional subspace, F2 onto a one-dimensional
subspace, and X onto an infinite-dimensional subspace.
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As a third example, consider a coin tossed three times in a row. A physical coin is made up
of atoms, so it has in principle a (rather complicated) quantum mechanical description. Thus a
“classical” property such as “heads” will correspond to some quantum projector H onto a subspace
of enormous dimension, and there will be another projector T for “tails”. Then by using the
projectors

F1 = H, F2 = T, F3 = T (8.4)

at successive times one obtains a quantum history HTT for the coin.

As a fourth example of a quantum history, consider a Brownian particle suspended in a fluid.
Whereas this is usually described in classical terms, the particle and the surrounding fluid are, in
reality, a quantum system. At time tj let Fj be the projector, in an appropriate Hilbert space, for
the property that the center of mass of the Brownian particle is inside a particular cubical cell.
Then (F1, F2, . . . Ff ) is the quantum counterpart of the classical history r1, r2, . . . rf introduced
earlier, with rj understood as a cell label, rather than a precise position.

One does not normally think of coin tossing in “quantum” terms, and there is really no advantage
to doing so, since a classical description is simpler, and is perfectly adequate. Similarly, a classical
description of the motion of a Brownian particle is usually quite adequate. However, these examples
illustrate the fact that the concept of a quantum history is really quite general, and is by no means
limited to processes and events at an atomic scale, even though that is where quantum histories
are most useful, precisely because the corresponding classical descriptions are not adequate.

The sample space of a coin tossed f times in a row is formally the same as the sample space of f
coins tossed simultaneously: each consists of 2f mutually exclusive possibilities. Since in quantum
theory the Hilbert space of a collection of f systems is the tensor product of the separate Hilbert
spaces, Ch. 6, it seems reasonable to use a tensor product of f spaces for describing the different
histories of a single quantum system at f successive times. Thus we define a history Hilbert space

as a tensor product

H̆ = H1 �H2 � · · ·Hf , (8.5)

where for each j, Hj is a copy of the Hilbert space H used to describe the system at a single time,
and � is a variant of the tensor product symbol ⊗. We could equally well write H1 ⊗ H2 ⊗ · · · ,
but it is helpful to have a distinctive notation for a tensor product when the factors in it refer to
different times, and reserve ⊗ for a tensor product of spaces at a single time. On the space H̆ the
history (F1, F2, . . . Ff ) is represented by the (tensor) product projector

Y = F1 � F2 � · · ·Ff . (8.6)

That Y is a projector, that is, Y † = Y = Y 2, follows from the fact that each Fj is a projector, and
from the rules for adjoints and products of operators on tensor products as discussed in Sec. 6.4.

8.4 Extensions and Logical Operations on Histories

Suppose that f = 3 in (8.6), so that

Y = F1 � F2 � F3. (8.7)
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This history can be extended to additional times by introducing the identity operator at the times
not included in the initial set t1, t2, t3. Suppose, for example, that we wish to add an additional
time t4 later than t3. Then for times t1 < t2 < t3 < t4, (8.7) is equivalent to

Y = F1 � F2 � F3 � I, (8.8)

because the identity operator I represents the property which is always true, and therefore provides
no additional information about the system at t4. In the same way, one can introduce earlier and
intermediate times, say t0 and t1.5, in which case (8.7) is equivalent to

Y = I � F1 � I � F2 � F3 � I (8.9)

on the history space H̆ for the times t0 < t1 < t1.5 < t2 < t3 < t4. We shall always use a notation
in which the events in a history are in temporal order, with time increasing from left to right.

The notational convention for extensions of operators introduced in Sec. 6.4 justifies using the
same symbol Y in (8.7), (8.8) and (8.9). And its intuitive significance is precisely the same in all
three cases: Y means “F1 at t1, F2 at t2, and F3 at t3”, and tells us nothing at all about what is
happening at any other time. Using the same symbol for F and F � I can sometimes be confusing
for the reason pointed out at the end of Sec. 6.4. For example, the projector for a two-time history
of a spin-half particle can be written as an operator product

[z+] � [x+] =
(

[z+] � I
)

·
(

I � [x+]
)

(8.10)

of two projectors. If on the right side we replace ([z+] � I) with [z+] and (I � [x+]) with [x+],
the result [z+] · [x+] is likely to be incorrectly interpreted as the product of two non-commuting
operators on a single copy of the Hilbert space H, rather than as the product of two commuting
operators on the tensor product H1 �H2. Using the longer ([z+] � I) avoids this confusion.

If histories are written as projectors on the history Hilbert space H̆, the rules for the logical
operations of negation, conjunction, and disjunction are precisely the same as for quantum prop-
erties at a single time, as discussed in Secs. 4.4 and 4.5. In particular, the negation of the history
Y , “Y did not occur”, corresponds to a projector

Ỹ = Ĭ − Y, (8.11)

where Ĭ is the identity on H̆. (Our notational convention allows us to write Ĭ as I, but Ĭ is clearer.)
Note that a history does not occur if any event in it fails to occur. Thus the negation of HH

when a coin is tossed two times in a row is not TT , but instead the compound history consisting
of HT , TH, and TT . Similarly, the negation of the quantum history

Y = F1 � F2 (8.12)

given by (8.11) is a sum of three orthogonal projectors,

Ỹ = F1 � F̃2 + F̃1 � F2 + F̃1 � F̃2, (8.13)

where F̃j means I−Fj . Note that the compound history Ỹ in (8.13) cannot be written in the form
G1 �G2, that is, as an event at t1 followed by another event at t2.
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The conjunction Y AND Y ′, or Y ∧ Y ′, of two histories is represented by the product Y Y ′ of
the projectors, provided they commute with each other. If Y Y ′ 6= Y ′Y , the conjunction is not
defined. The situation is thus entirely analogous to the conjunction of two quantum properties at
a single time, as discussed in Secs. 4.5 and 4.6. Let us suppose that the history

Y ′ = F ′
1 � F ′

2 � F ′
3 (8.14)

is defined at the same three times as Y in (8.7). Their conjunction is represented by the projector

Y ′ ∧ Y = Y ′Y = F ′
1F1 � F ′

2F2 � F ′
3F3, (8.15)

which is equal to Y Y ′ provided that at each of the three times the projectors in the two histories
commute:

F ′
jFj = FjF

′
j for j = 1, 2, 3. (8.16)

However, there is a case in which Y and Y ′ commute even if some of the conditions in (8.16)
are not satisfied. It occurs when the product of the two projectors at one of the times is zero, for
this means that Y Y ′ = 0 independent of what projectors occur at other times. Here is an example
involving a spin-half particle:

Y = [x+] � [x+] � [z+],

Y ′ = [y+] � [z+] � [z−].
(8.17)

The two projectors at t1, [x+] and [y+], clearly do not commute with each other, and the same is
true at time t2. However, the projectors at t3 are orthogonal, and thus Y Y ′ = 0 = Y ′Y .

A simple example of a non-vanishing conjunction is provided by a spin-half particle and two
histories

Y = [z+] � I, Y ′ = I � [x+], (8.18)

defined at the times t1 and t2. The conjunction is

Y ′ ∧ Y = Y ′Y = Y Y ′ = [z+] � [x+], (8.19)

and this is sensible, for the intuitive significance of (8.19) is “Sz = +1/2 at t1 and Sx = +1/2 at t2.”
Indeed, any history of the form (8.6) can be understood as “F1 at t1, and F2 at t2, and . . .Ff at tf .”
This example also shows how to generate the conjunction of two histories defined at different sets
of times. First one must extend each history by including I at additional times until the extended
histories are defined on a common set of times. If the extended projectors commute with each
other, the operator product of the projectors, as in (8.15), is the projector for the conjunction of
the two histories.

The disjunction “Y ′ or Y or both” of two histories is represented by a projector

Y ′ ∨ Y = Y ′ + Y − Y ′Y (8.20)

provided Y ′Y = Y Y ′; otherwise it is undefined. The intuitive significance of the disjunction of two
(possibly compound) histories is what one would expect, though there is a subtlety associated with
the quantum disjunction which does not arise in the case of classical histories, as has already been
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noted in Sec. 4.5 for the case of properties at a single time. It can best be illustrated by means of
an explicit example. For a spin-half particle, define the two histories

Y = [z+] � [x+], Y ′ = [z+] � [x−]. (8.21)

The projector for the disjunction is

Y ∨ Y ′ = Y + Y ′ = [z+] � I, (8.22)

since in this case Y Y ′ = 0. The projector Y ∨ Y ′ tells us nothing at all about the spin of the
particle at the second time: in and of itself it does not imply that Sx = +1/2 or Sx = −1/2 at
t2, since the subspace of H̆ on which it projects contains, among others, the history [z+] � [y+],
which is incompatible with Sx having any value at all at t2. On the other hand, when the projector
Y ∨ Y ′ occurs in the context of a discussion in which both Y and Y ′ make sense, it can be safely
interpreted as meaning (or implying) that at t2 either Sx = +1/2 or Sx = −1/2, since any other
possibility, such as Sy = +1/2, would be incompatible with Y and Y ′.

This example illustrates an important principle of quantum reasoning: The context, that is,
the sample space or event algebra used for constructing a quantum description or discussing the
histories of a quantum system, can make a difference in how one understands or interprets various
symbols. In quantum theory it is important to be clear about precisely what sample space is being
used.

8.5 Sample Spaces and Families of Histories

As discussed in Sec. 5.2, a sample space for a quantum system at a single time is a decomposition
of the identity operator for the Hilbert space H: a collection of mutually orthogonal projectors
which sum to I. In the same way, a sample space of histories is a decomposition of the identity
on the history Hilbert space H̆, a collection {Y α} of mutually orthogonal projectors representing
histories which sum to the history identity:

Ĭ =
∑

α

Y α. (8.23)

It is convenient to label the history projectors with a superscript in order to be able to reserve the
subscript position for time. Since the square of a projector is equal to itself, we will not need to
use superscripts on projectors as exponents.

Associated with a sample space of histories is a Boolean “event” algebra, called a family of

histories, consisting of projectors of the form

Y =
∑

α

παY α, (8.24)

with each πα equal to 0 or 1, as in (5.12). Histories which are members of the sample space will
be called elementary histories, whereas those of the form (8.24) with two or more πα equal to 1
are compound histories. The term “family of histories” is also used to denote the sample space of
histories which generates a particular Boolean algebra. Given the intimate connection between the
sample space and the corresponding algebra, this double usage is unlikely to cause confusion.
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The simplest way to introduce a history sample space is to use a product of sample spaces as
that term was defined in Sec. 6.6. Assume that at each time tj there is a decomposition of the
identity Ij for the Hilbert space Hj ,

Ij =
∑

αj

P
αj

j , (8.25)

where the subscript j labels the time, and the superscript αj labels the different projectors which
occur in the decomposition at this time. The decompositions (8.25) for different values of j could
be the same or they could be different; they need have no relationship to one another. (Note that
the sample spaces for the different classical systems discussed in Sec. 8.2 have this sort of product
structure.) Projectors of the form

Y α = Pα1

1
� Pα2

2
� · · · � P

αf

f , (8.26)

where α is an f -component label
α = (α1, α2, . . . αf ), (8.27)

make up the sample space, and it is straightforward to check that (8.23) is satisfied.
Here is a simple example for a spin half particle with f = 2:

I1 = [z+] + [z−], I2 = [x+] + [x−]. (8.28)

The product of sample spaces consists of the four histories

Y ++ = [z+] � [x+], Y +− = [z+] � [x−],

Y −+ = [z−] � [x+], Y −− = [z−] � [x−],
(8.29)

in an obvious notation. The Boolean algebra or family of histories contains 24 = 16 elementary
and compound histories, including the null history 0 (which never occurs).

Another type of sample space that arises quite often in practice consists of histories which begin
at an initial time t0 with a specific state represented by a projector Ψ0, but behave in different
ways at later times. We shall refer to it as a family based upon the initial state Ψ0. A relatively
simple version is that in which the histories are of the form

Y α = Ψ0 � Pα1

1
� Pα2

2
� · · · � P

αf

f , (8.30)

with the projectors at times later than t0 drawn from decompositions of the identity of the type
(8.25). The sum over α of the projectors in (8.30) is equal to Ψ0, so in order to complete the sample
space one adds one more history

Z = (I − Ψ0) � I � I � · · · � I (8.31)

to the collection. If, as is usually the case, one is only interested in the histories which begin with
the initial state Ψ0, the history Z is assigned zero probability, after which it can be ignored. The
procedure for assigning probabilities to the other histories will be discussed in later chapters. Note
that histories of the form

(I − Ψ0) � Pα1

1
� Pα2

2
� · · · � P

αf

f (8.32)
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are not present in the sample space, and for this reason the family of histories based upon an
initial state Ψ0 is distinct from a product of sample spaces in which (8.25) is supplemented with
an additional decomposition

I0 = Ψ0 + (I − Ψ0) (8.33)

at time t0. As a consequence, later events in a family based upon an initial state Ψ0 are dependent
upon the initial state in the technical sense discussed in Ch. 14.

Other examples of sample spaces which are not products of sample spaces are used in various
applications of quantum theory, and some of them will be discussed in later chapters. In all cases
the individual histories in the sample space correspond to product projectors on the history space
H̆ regarded as a tensor product of Hilbert spaces at different times, (8.5). That is, they are of the
form (8.6): a quantum property at t1, another quantum property at t2, and so forth. Since the
history space H̆ is a Hilbert space, it also contains subspaces which are not of this form, but might
be said to be “entangled in time”. For example, in the case of a spin-half particle and two times t1
and t2, the ket

|ε〉 =
(

|z+〉 � |z−〉 − |z−〉 � |z+〉
)

/
√

2 (8.34)

is an element of H̆, and therefore [ε] = |ε〉〈ε| is a projector on H̆. It seems difficult to find a physical
interpretation for histories of this sort, or sample spaces containing such histories.

8.6 Refinements of Histories

The process of refining a sample space in which coarse projectors are replaced with finer projectors
on subspaces of lower dimensionality was discussed in Sec. 5.3. Refinement is often used to construct
sample spaces of histories, as was noted in connection with the classical random walk in one
dimension in Sec. 8.2. Here is a simple example to show how this process works for a quantum
system. Consider a spin-half particle and a decomposition of the identity {[z+], [z−]} at time t1.
Each projector corresponds to a single-time history which can be extended to a second time t2 in
the manner indicated in Sec. 8.3, to make a history sample space containing

[z+] � I, [z−] � I. (8.35)

If one uses this sample space, there is nothing one can say about the spin of the particle at the
second time t2, since I is always true, and is thus completely uninformative. However, the first
projector in (8.35) is the sum of [z+] � [z+] and [z+] � [z−], and if one replaces it with these two
projectors, and the second projector in (8.35) with the corresponding pair [z−]�[z+] and [z−]�[z−],
the result is a sample space

[z+] � [z+], [z+] � [z−],

[z−] � [z+], [z−] � [z−],
(8.36)

which is a refinement of (8.35), and permits one to say something about the spin at time t2 as well
as at t1.

When it is possible to refine a sample space in this way, there are always a large number of ways
of doing it. Thus the four histories in (8.29) also constitute a refinement of (8.35). However, the
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refinements (8.29) and (8.36) are mutually incompatible, since it makes no sense to talk about Sx

at t2 at the same time that one is ascribing values to Sz, and vice versa. Both (8.29) and (8.36) are
products of sample spaces, but refinements of (8.35) which are not of this type are also possible;
for example,

[z+] � [z+], [z+] � [z−],

[z−] � [x+], [z−] � [x−],
(8.37)

where the decomposition of the identity used at t2 is different depending upon which event event
occurs at t1.

The process of refinement can continue by first extending the histories in (8.36) or (8.37) to an
additional time, either later than t2 or earlier than t1 or between t1 and t2, and then replacing the
identity I at this additional time with two projectors onto pure states. Note that the process of
extension does not by itself lead to a refinement of the sample space, since it leaves the number of
histories and their intuitive interpretation unchanged; refinement occurs when I is replaced with
projectors on lower-dimensional spaces.

It is important to notice that refinement is not some sort of physical process which occurs in
the quantum system described by these histories. Instead, it is a conceptual process carried out
by the quantum physicist in the process of constructing a suitable mathematical description of the
time dependence of a quantum system. Unlike deterministic classical mechanics, in which the state
of a system at a single time yields a unique description (orbit in the phase space) of what happens
at other times, stochastic quantum mechanics allows for a large number of alternative descriptions,
and the process of refinement is often a helpful way of selecting useful and interesting sample spaces
from among them.

8.7 Unitary Histories

Thus far we have discussed quantum histories without any reference to the dynamical laws of
quantum mechanics. The dynamics of histories is not a trivial matter, and is the subject of the
next two chapters. However, at this point it is convenient to introduce the notion of a unitary

history. The simplest example of such a history is the sequence of kets |ψt1〉, |ψt2〉, . . . |ψtf 〉, where
|ψt〉 is a solution of Schrödinger’s equation, Sec. 7.3, or, to be more precise, the corresponding
sequence of projectors [ψt1 ], [ψt2 ],. . . . The general definition is that a history of the form (8.6) is
unitary provided

Fj = T (tj , t1)F1T (t1, tj) (8.38)

is satisfied for j = 1, 2, . . . f . That is to say, all the projectors in the history are generated from F1

by means of the unitary time development operators introduced in Sec. 7.3, see (7.44). In fact, F1

does not play a distinguished role in this definition and could be replaced by Fk for any k, because
for a set of projectors given by (8.38), T (tj , tk)FkT (tk, tj) is equal to Fj whatever the value of k.

One can also define unitary families of histories. We shall limit ourselves to the case of a
product of sample spaces, in the notation of Sec. 8.5, and assume that for each time tj there is a
decomposition of the identity of the form

Ij =
∑

a

P a
j . (8.39)
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The corresponding family is unitary if for each choice of a these projectors satisfy (8.38), that is,

P a
j = T (tj , t1)P

a
1 T (t1, tj) (8.40)

for every j. In the simplest (interesting) family of this type each decomposition of the identity
contains only two projectors; for example, [ψt1 ] and I − [ψt1 ]. Notice that while a unitary family
will contain unitary histories, such as

P 1
1 � P 1

2 � P 1
3 � · · ·P 1

f , (8.41)

it will also contain other histories, such as

P 1
1 � P 2

2 � P 1
3 � · · ·P 1

f , (8.42)

which are not unitary. We will have more to say about unitary histories and families of histories
in Secs. 9.3, 9.6, and 10.3.


