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1 Geometrical Symmetries

% Many objects display geometrical symmetries which can be associated with a group of trans-
formations that leaves the object invariant. For example, a five-pointed star is left unchanged by
rotations of 360/5 = 72°, as well as by a reflection in a line passing from a point of the star through
the center.



1.1 Linear molecules

% This is also true at the microscopic level where, for example, a helium atom is spherically
symmetrical—unchanged under all rotations and reflections of the group O(3). Carbon monoxide,
CO, is symmetrical under all rotations about the axis joining the carbon to the oxygen, and
reflections in all planes that include this axis. Carbon dioxide, COa3, is linear and has the form
0-C-0, with the carbon midway between the oxygens. Thus in addition to being invariant under
the same rotations and reflections as CO, it is unchanged under a reflection in a plane throuh the
center of the carbon and perpendicular to the axis, as well as by 2-fold (180°) rotations about any
axis lying in this plane and passing through the carbon.

O Exercise. Assume that the COs molecular axis is the z axis, and C is at the center of
coordinates. Describe the 3 x 3 matrices of O(3) which constitute the different symmetry elements,
and verify that they form a group.

O Exercise. The HoO molecule, unlike COs, is not linear. The hydrogen atoms are equidistant
from the oxygen, but the angle between them (seen from the center of the oxygen) is 104.5° instead
of 180°. Assume the molecule lies in the x, z plane with O at the origin and the z axis midway
betwen the hydrogens. Find the geometrical symmetries of this system including reflections as well
as rotations. Show that the symmetry group is isomorphic to something well known.

1.2 Triangular prism

e An equilateral triangular prism with its 3-fold axis oriented along the z axis is shown schemat-
ically in Fig. 1. In parts (b) and (c) of the figure the fully symmetry has been reduced by placing
arrows on some of the edges. Thus the reflection plane which interchanges the top and bottom of
the prism is absent in (b), while the 2-fold rotations about an axis passing through the center of a
rectangular face and the opposite vertical edge are absent in (c).

Figure 1: Triangular prism, where the dashed line indicates a hidden edge: (a) full symmetry Dsp,,
(b) reduced symmetry D3, (c) reduced symmetry C',

* Let us start with Fig. 1(b) The symmetry elements are those of Ds: a 3-fold axis with 3
2-fold axes perpendicular to it. Viewed as permutations on the labeled vertices the 2-fold rotations
are

a=(11)(23)(23), b= (22)(13)(13), c=(33)(12)(12), (1)

while the rotations by 120° about the 3-fold axis are
r=(123)(123), s=1r?=(132)(132), (2)

clockwise and counterclockwise when viewed from above. Along with the identity these operations
give a group of order 6.

% The full symmetry of the prism shown in Fig. 1(a) is a group Dsj, obtained by adding to Ds
a horizontal reflection plane perpendicular to the 3-fold axis and passing through the geometrical



center of the prism. (This is the reason for the 'h’ in Dsp.) The 6 new symmetries are obtained by
multiplying each element in D3 by this reflection,

h = (11)(22)(33). (3)

This yields a set of 3 reflections in vertical planes passing through the z axis, which we label
a=ha=(23)(23), b=hb=(13)(13), &= hec=(12)(12) (4)

and two screw reflections, the h reflection preceded or followed by one of the 3-fold rotations:
7 = hr = (123123), &= hs = (132132) (5)

O Exercise. Find the conjugate classes of Dsj,. Show that D3 and {e, h} are normal subgroups
of D3yp; in particular, check that h commutes with every element of D3. Argue that Dsp, is a direct
product of D3 and {e, h}.

O Exercise. Find the 3 x 3 matrices in O(3) that correspond to the symmetry elements of Dy,
with rows and columns in the order z, y, z, and axes chosen so that the +y axis passes through
the 11 edge of the prism

% The symmetry of the prism when decorated as in Fig. 1(c) is the group Cs,. The 2-fold axes
are no longer symmetry elements, which is why D has been replaced by C. Hwwever, the 3 vertical
reflection planes (the source of the v in Cs,) indicated in (4) are present in C,, though absent
from Ds.

e The symmetry groups D3 and (s, are isomorphic as abstract groups, but do not denote the
same set of crystal symmetries! No crystallographer will confuse quartz (Ds) with lithium sodium
sulphate (Cs,).

O Exercise. Exhibit the isomorphism between D3 and C,, and show that it preserves group
multiplication.

1.3 Tetrahedron

% The molecule CH4 has the symmetry of a tetrahedron, with the carbon at the center and
the 4 hydrogens at the vertices. Figure 2 shows a tetrahedron oriented in such a way that one is
looking down on the 13 edge, which is directly above the 24 edge shown as a dashed line.
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Figure 2: Tetrahedron

% The tetrahedral group 7 is the subgroup of SO(3), rotations but no reflections, that carries
the tetrahedron into itself. The symmetry elements, indicated here as permutations, fall into four
classes. The identity e, as always, is in a class by itself. There are 3 2-fold rotations about axes
passing through the midpoints of opposite edges:

(12)(34), (13)(24), (14)(23). (6)



Next come rotations by 120° about an axis passing through a vertex and the center of the opposite
face. Perhaps somewhat surprisingly these fall into two classes, clockwise and counterclockwise
when viewing the face:

Clockwise: (243), (134), (142), (123) (7)
Counterlockwise: (234), (143), (124), (132) (8)

e Total number of elements is 1 +3 +4+4 = 12.

e Viewed in terms of permutations, 7" is isomorphic to A4, the alternating group on 4 letters.

% The full tetrahedral group T}, is obtained by adding reflections such as (12) to the rotations
comprising T'. It is a group of order 24, isomorphic to the symmetric group Sy.

e Note that while 7" is a normal subgroup of T},, T} is not (isomorphic to) a direct product of
T and Th/T = ZQ.

O Exercise. Prove these assertions.

e When working out the 3 x 3 rotation or reflection matrices corresponding to the elements of T’
or T}, it is convenient to regard T as a subgroup of the group O of the cube (and T} as a subgroup
of Oy) by placing the tetrahedron inside a cube in such a way that the tetrahedron vertices coincide
with 4 of the cube vertices, and the 6 edges of the tetrahedron are diagonals of the square faces of
the cube. (It helps to draw a picture.)

1.4 Cube

% The group O (O stands for “octahedron”) includes all the proper rotations, elements of
SO(3), that leave a cube invariant. These fall in a five classes, four in addition to the identity class,
which can be described as follows, assuming that the faces of the cube are orthogonal to the z, y,
and z axes.

o Six rotations of £90° about a coordinate axis
o Three rotations by 180° about a coordinate axis

o Six rotations by 180° about an axis passing through the centers of two opposite edges of the
cube

o Eight rotations of +120° about axes connecting opposite cube verticies.

e It may come as a surprise, after considering the tetrahedral group 7', that all the 90° rotations
fall in a single class, and likewise all the 120° rotations, even though the symmetry group O does
not include reflections. The reason is that in the case of the cube, unlike a tetrahedron, there is a
proper (ordinary) rotation which interchanges the two ends of the relevant axis, thus interchanging
clockwise and counterclockwise rotations.

o It is fairly easy to construct the 3 x 3 matrices for all the symmetry elements of O, since (with
axes chosen normal to faces) the matrix elements are either 0 or +1, and the determinant is always
+1.

O Exercise. Construct a matrix for one of the elements in each of the five classes, and explain
how the matrices of the other elements in the class are related to it.

% The symmetry group Oy of the cube including reflections has a total of 48 elements. It
is a direct product of O with the the subgroup consisting of the identity and the inversion, the
operation that reverses the sign of all of the coordinate axes.

e Since the inversion corresponds to the 3 x 3 matrix J = —I, where [ is the identity, it is
obvious that it commutes with all the matrices for O, and the additional 24 matrices that make



up Oy are obtained from those of O by multiplying each by —1, hence changing the sign of the
determinant.

% Crystal symmetries are discussed extensively by Phillips, who gives a number of drawings of
facets of different crystals. Hamermesh gives a somewhat shorter discussion in Ch. 2, and Tinhkham
a rather brief overview at the beginning of Ch. 4.

2 Space Groups

2.1 Introduction

% Crystal symmetries were observed long before the internal structure of crystals was worked
out, beginning around 1912, using X-ray diffraction. Observation of angles between the normals of
different faces led to a systematic classification of crystal symmetries which was completed in the
nineteenth century.

e For some notes on the historical development, see Koster, Sec. VI, and Phillips, Ch. I.

% The 32 crystal symmetry groups or classes, each a subgroup of O(3), rotations and reflections
in 3 dimensions, are divided into 7 systems (monoclinic, cubic, etc.).

e Although they make no direct reference to internal structure, the fact that there are only
32 groups is nowadays understood to arise from the fact that crystals have a periodic internal
structure, and periodic structures are only compatible with a rather small number of rotation and
reflection symmetries. In particular, 5-fold axes, rotations by 72°, are incompatible with an internal
periodicity.

e However, there are materials known as quasicrystals whose macroscopic symmetries fall out-
side the list of 32, and sometimes include 5-fold axes. While they do not possess an internal periodic
structure in the same sense as a crystal, they nevertheless correspond to a fairly regular arrange-
ment of atomic constituents. Their structure and properties have been the subject of intense study
since their discovery in the 1980’s. Quasicrystals lie outside the scope of these notes, which are
only concerned with periodic crystals.

% Space groups are used to describe the internal, microscopic symmetry of crystals. They
include translations, corresponding to the periodic arrangement of atoms or molecules, and in
addition various rotations and reflections.

e Each of the 32 possible macroscopic symmetry groups corresponds to a certain number of
distinct periodic arrangements of elements in the crystal, the symmetries of which are distinguished
by different space groups. There are a total of 230 space groups.

e Of these, 73 are symmorphic and 157 are nonsymmorphic, a distinction which will be discussed
in Sec. 2.2.

% Space groups are discussed by Dresselhaus, but I find the treatment in Koster a bit clearer.
Phllips provides a fairly geometrical discussion with pictures. Tinkham, as well as much of the
material in Dresselhaus, focuses on the representation of space groups, rather than on the groups
as geometrical symmetries, which is the emphasis of these notes.

2.2 General Properties

% Space groups can be defined for any n-dimensional space R™ with points of the form r =
(ri,72,...75), and the square of the distance between two points defined by
n

e—r'P =3 (i =) 9)

i=1



% Transformations of R which leave the distance between any two points unchanged constitute
the Fuclidean group E(n). Any such transformation can be denoted by a pair (A|u), often written
{A|u} using curly brackets, where A € O(n) and u € R™. It acts on R” by mapping each point r

to another point
(Alu)r =1’ =u+ Ar, (10)

where Ar denotes the usual linear map or matrix multiplication applied to a vector.

o Note the order in (10): first A acts on r and only then is u added to the result. Adding u
first and then applying A to the sum will in general give a different result.

% One can use (10) to derive the rule for group multiplication:
(Blv)(AJu)r = (B|v)(u+ Ar) = v + Bu + BAr. (11)
From this it follows, again see (10), that the multiplication rule is

(B|v)(A|u) = (BA|v + Bu). (12)

e The identity transformation (7|0), where I is the identity operator of matrix and thus the
identity of O(n), leaves every point fixed, and is thus the group identity for E(n). The operation
(A]0) is a rotation about the origin, or a reflection in a plane passing through the origin.

o Henceforth I will replace 0, denoting the zero vector, by 0.
e The inverse of (A|u) is

(Aw)~h = (A7 = A7 ). (13)
O Exercise. Check it.

* A space group G is a subgroup of E(n) with the property that the translations, defined by
T={t:(It) € G}. (14)

are of the form

t = Zniai (15)

where each n; is some integer, and the primitive translation vectors ai,as,...a, are linearly inde-
pendent.

% Sometimes it is convenient to think of “translations” as the collection of vectors in (14), and
sometimes as the corresponding subgroup of G:
T={t):teT} (16)
There would be little harm in using the same symbol for both, as the context will make clear which
is meant.

% In view of the multiplication rule (12), the elements A of that occur in G in the form (A|u)
must themselves form a subgroup of O(n) known as the point group, and denoted here by P.

% The translations T" form a normal subgroup of G, as can be seen as follows. Conjugate (I|t)
by an arbitrary element of G:

(AJu)(Z]6) (A" — A~'u) = (1] A¢). (17)

The right side is by definition an element of 1. So gT'g = T for any g € G, and thus T is normal.



% In addition, (17) tells us that whenever t is in T, so is At for any A in the point group. In
other words, since A is invertible,
AT =T (18)

for every A in P.

e Since every A in P preserves the length of a vector, and since the primitive vectors a; in (15)
span R™, it is pretty obvious (though proving it could be a trifle tricky) that the point group P
must be finite.

% The Bravais lattice is the collection of points in R™ obtained by applying T to the origin,
i.e., the set of points of the form ), n;a; € R™ (compare (15)). It is convenient to think of it as a
geometrical object, and as such it is mapped into itself by any member of T’

e Defined in this way there is obviously a one-to-one correspondence between the Bravais lattice
and the collection 7" of translations. Hence one sometimes thinks of, or refers to, the Bravais lattice
as the collection of translations which represent displacements of R™ rather than as a collection of
points in R™. No harm seems to arise from this ambiguous usage.

e When dealing with a particular crystal structure there will in general be good and bad choices
for the origin of coordinates, which determines the Bravais lattice. This is a matter best dealt with
using some examples, see Secs. 3 and 4.1.

e The point group of the Bravais lattice itself, (called the holosymmetric point group), may be
larger than P; again, this is best understood in terms of examples.

* A symmorphic space group is one in which G contains an element (A|0) for every element A
in the point group P. Since elements of the type (A|0) always form a subgroup of G, one can say
that in this case G contains a subgroup isomorphic to P.

% The point group P of a nonsymmorphic space group G contains certain elements F' for which
(F|0) does not belong to G. That is, G contains (F|u) for certain vectors u which are not in the
collection T of translations.

* If (Flu) is in G, so is (F|u+t) = (I|t)(F|u) for any t in 7. In addition, if (F|u) and (F|v)
are both members of G, then so is

(Fla)(Flv)™ = (Flu)(F~!| = F~'v) = (Iju - v). (19)

Hence the difference u — v must be in 7. Thus for a particular F in P, the collection of u vectors
for which (F'|u) is a member of G is necessarily of the form

up+T={up+t:teT} (20)

In the symmorphic case we can choose up = 0 for every F' € P, whereas in the nonsymmorphic
case there are certain elements of P for which ug cannot be 0.

e This needs to be made a bit more precise. For a given crystal structure there may be more
than one sensible location for the origin of coordinates, as we shall see in examples. Naturally it
makes sense to choose the origin so that as many as possible of the urp in (20) can be set equal to
0. A nonsymmorphic space group is one in which no choice of origin allows one to simultaneously
set up = 0 for every F in P.

* That @ = G/T is isomorphic to P can be seen as follows. For each A in P define the A
coset of T' as (A|u)T = T'(AJu) using any u for which (AJu) is in G. In view of the preceding
discussion it does not matter which u we use, the result is always the same: all elements of G with
A in front of the |. Clearly the cosets do not overlap, and G is equal to their union. In view of
the multiplication rule (12) the product of the B and A cosets as sets yields the BA coset, which
corresponds to the multiplication rule for P.



% If G is a symmorphic space group it is a semidirect product of P = G/T and T. This
follows immediately from the product rule (12), where we can assume that u and v, and therefore
also v + Bu, see (18), are members of T. For a semidirect product one needs a collection of
automorphisms of one of the groups, and in the present instance an appropriate automorphism is

(I|t) — (1|Bt) (21)

for all t in T, with B a fixed element of P. We leave the details as an exercise.

O Exercise. Work out the details of the argument that a symmorphic space group G is a semidi-
rect product of G/T and T. What prevents the same argument from working for a nonsymmorphic
space group?

3 Space Groups in One Dimension

e Many of the principles that relate space groups to translation and point groups can be usefully
explored in one or two dimensions, where things are easier to visualize than for three-dimensional
crystals.

Figure 3: One dimensional crystal with (a) no symmetry apart from translation, (b) an additional
reflection symmetry

e In one dimension there are only two space groups, corresponding to the symmetries of the
two “crystals” in Fig. 3

% In (a) there is no symmetry apart from translation, and the space group G is the same as
the translation group 7', with all translations multiples of the period a > 0. The Bravais lattice is
indicated by a series of dots. The choice of the position of the dot relative to one of the “molecules”
is arbitrary; it could be placed anywhere. Of course, once one dot is fixed the rest of the Bravais
lattice is fixed. By convention the origin £ = 0 is a point on the Bravais lattice, and for this
symmetry group the choice of origin, relative to the crystal structure, makes no difference.

e The region between two points on the Bravais lattice constitutes a “primitive cell”: the entire
periodic structure can be made up by taking a single primitive cell and translating by all possible
translation vectors. These images of the primitive cell do not overlap, and their union is the entire
“crystal.” Obviously the choice of primitive cell is not unique.

% In Fig. 3(b) the situation is different from (a) in that there is a reflection symmetry in
addition to the translational symmetry. The point group P is then {I,J}, where Iz = z and
Jx = —z, a reflection through the origin. The group consists of all the elements (I|m) and (J|n),
where for convenience we assume that the lattice constant a is equal to 1, and thus m and n are
integers.

e Note that the choice of origin of the Bravais lattice is no longer altogether arbitrary. In order
for the crystal to be invariant under (J|0) we place the origin at one of the points of reflection
symmetry. One possibility is that indicated in Fig. 3(b). However, we could also have arranged the



Bravais lattice so as to have the points midway between the molecules. The fact that we seem to
have not one but two types of reflection by no means accidental, and follows from the mathematics,
as we shall see.

o The definition of a primitive cell is exactly the same as for the less symmetric situation in part
(a) of the figure. However, one may wish to choose the primitive cell in some way that reflects the
structure of the underlying crystal, in which case there are two obvious choices: an interval that
begins and ends on a Bravais lattice point, or begins and ends midway between two such points.

e The multiplication table for G is relatively simple:

(Ilm)(I|n) = (Ilm +n), (JIm)(JIn) = (I|m —n),
(Llm)(J|n) = (Jlm +mn), (Jm)(I|n) = (JIm —n), (22)

e Note that (J|m) is its own inverse, and multiplication is not commutative, so the space group
is nonabelian, even though the point group is abelian.

% The geometrical interpretation of (I|m) is straightforward, but that of (J|m) is less so. To
understand what is going on note that the action of (J|m) on R is given by

(Jim)x =m — =z, (23)

and this leaves the point x = m/2 fixed. Thus (J|m) is a reflection about the point m/2, cor-
responding in Fig. 3(b) to a reflection about a point on the Bravais lattice when m is even, and
a point midway between points on the Bravais lattice when m is odd. While both of these are
reflections, we feel intuitively that they are in some sense different.

e The difference just mentioned is confirmed by an analysis of the conjugacy classes. Thus
(I|n)(JIm)(I| —n) = (Jim + 2n), (J|n)(J|m)(J|n) = (J|2n —m) (24)

are elements conjugate to (J|m), and it is at once evident that that they change m to a new
value m’ which is even if m is even, and odd when m is odd. Thus the even-odd character of the
reflections is preserved under conjugacy.

O Exercise. Complete the analysis of conjugate classes in GG by finding the elements conjugate
to (I|m).

% The translations 7', i.e., all the elements (I|m), are obviously a normal subgroup—in agree-
ment with the general argument given earlier, see (17)—since the only other coset consists of
precisely the elements (J|m). The quotient group is Q@ = G/T = Zs, but G is obviously not the
direct product of T" and Q.

O Exercise. Why is it obvious?

e In fact G is (isomorphic to) the semidirect product of @ and T, using the identity and the
m — —m automorphisms of Z = T.

O Exercise. Work out the details.

4 Space Groups in Two Dimensions

4.1 Introduction

% In two dimension there are 10 different point groups or crystal classes divided into 4 distinct
systems. Associated with these are a total of 17 space groups. For complete descriptions see ITC.
We shall only look at a few examples in order to get the general idea.



e The four systems are: oblique (2), rectangular (2), square (2), hexagonal (4), where the
numbers in parentheses indicate the numer of distince point groups associated with the system.
The classification up to this point makes no essential reference to the internal structure of the
two-dimensional crystal. However, the limited number of point groups results from restrictions
encountered when combining them with a periodic structure.

4.2 Oblique system

e There are two point groups, each with an associated space group, associated with the oblique
system. The name “oblique” refers to the fact that there is no particular relationship between the
primitive translation vectors a; and as, or, on the macroscopic level, between crystal facets, in
contrast to the other systems. We will describe both space groups

% One should think of the periodic array in Fig. 4 as extending off to infinity. The “molecules”
have no particular symmetry associated with them, but lie in a periodic array on top of which
is superimposed a Bravais lattice with light lines connecting the lattice points. The origin of the
lattice is arbitrary. The primitive translation vectors a; and as have no particular relationship with
each other, and their choice is not unique even when the Bravais lattice is given. One searches in
vain for any sort of rotation or reflection which will carry the structure onto itself, and consequently
the point group is the trivial {I}

e One of the small parallelograms between lines connecting points on the Bravais lattice can
serve as a primitive cell: something which will cover the entire crystal when shifted by all of the
translations in 7.

e Notice that in this case the Bravais lattice (think of it as the collection of points that are at
the intersections of the straight lines) has a higher symmetry than the crystal, as it is invariant
under a set of 2-fold rotations discussed in the next example.

O Exercise. Why are the primitive translations a; and as not unique? An obvious choice is to
make them two sides of one of the parallelograms in the figure, and of course one can reverse the
direction of either, e.g., a; — —aj. But is there more freedom than this? Are there other choices
that will produce the same Bravais lattice?

% A more interesting example is provided by the crystal in Fig. 5. The molecules are no
more symmetrical than those in Fig. 4, but by arranging them with appropriate positions and
orientations one arrives at a higher symmetry for the overall structure. Inspection shows that each
Bravais lattice point, at the intersection of two of the light straight lines, is a 2-fold rotation axis.
In addition there are other distinct kinds of 2-fold axes (or points).

O Exercise. How many distinct kinds of 2-fold rotations can you spot before reading further?

e It is worth noting that in this example the symmetry of the crystal is exactly the same as the
symmetry of the Bravais lattice, obtained by throwing away the molecules in Fig. 5 and retaining
only the straight lines (or, to be more precise, their intersections).

% The space group is generated by two types of operation: (I|t) and (J|t), where J is the
2-fold rotation that carries x,y into —z, —y, the element of O(2) represented by the matrix —I.

e It will be convenient to represent points in R? using the nonorthogonal coordinates system
provided by a; and as, and to write

r=¢&a;+naz = (§n), (Jr)=(JEn), )= ([¢n). (25)

The Bravais lattice itself corresponds to & and n taking integer values, and the other points of
interest to us turn out to be simple fractions. The elements of G are of the form (I/|m,n) and
(J|m,n), where m and n are integers.
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Figure 4: Crystal in 2 dimensions with no symmtry except translation

% The group multiplication table is easily seen to be

(Ilm,n)(I|m/,n") = (Ilm +m/;n+n'), (J|m,n)(J|m’,n") = (I|m —m',n —n'),
(Ilm,n)(J|m',n') = (Jim +m/,n+1n), (Jlm,n)I|m',n") = (Jjm —m/,n—n"),  (26)

which bears a suspicious resemblance to (22).

% To give (J|m,n) a geometrical interpretation, we note that when acting on R?,

(JIm,n)(&,m) = (m =& n—n) (27)

has a fixed point at
E=m/2, n=mn/2 (28)

e Thus the situation is analogous to the 1-dimensional case studied earlier in Sec. 3: we expect
to find four different types of 2-fold rotation: (i) both m and n even, (ii) m even and n odd, (iii)
m odd and n even, (iv) m and n both odd.

O Exercise. Identify the location of one instance of each of these types in Fig. 5, assuming that
a; points horizontally to the right and as upwards and slightly to the left.

O Exercise. Find the conjugacy classes of G. Check that the four types of 2-fold rotation just
discussed fall in four distinct conjugacy classes. How are the translations divided up into conjugacy
classes?

% Since the point group {1, .J} is obviously isomorphic to @ = G/T, the discussion about the
relationship of G to @ and T at the end of Sec. 3 applies almost word for word to the present
situation.

O Exercise. Confirm that this is so

e Again, one of the small parallelograms constitutes a primitive cell. Note that each type of
2-fold rotation occurs precisely once in a primitive cell if one shifts it slightly so that no rotation
point lies on a boundary.

11



Figure 5:

4.3 Rectangular system: glide lines

e There are two point groups associated with the rectangular system, which takes its name
from the fact that the unit cell may be taken to be a rectangle. Each point group has several space
groups associated with it, for a total of 7 space groups for this system. We discuss one of them
here, and a second below.

% The pattern shown in Fig. 6(a), next page, has very little symmetry, but if one inspects it
closely one sees that the dashed lines, placed as a guide to the eye, are actually reflection lines
provided that the reflection is accompanied by a shift of 1/2 of a primitive translation in the
horizontal direction. There are no rotation axes

e Part (b) of the figure shows a Bravais lattice superimposed on the pattern, and also shows
the rectangular unit cell. The horizontal origin of coordinates is arbitary, whereas the vertical is
chosen in such a way that the Bravais lattice falls on glide reflection lines.

% If z and y are measured in units of the width (a) and height (b) of the unit cell, respectively,
the group elements can be written in the form (I|m,n) and (B|m+ 1/2,n), where m and n in each
case are arbitary integers, and B is the point operation consisting of reflection in the = axis, thus
Yy— -y

e As there is no way to choose the coordinate system in order to make (B|0,0) a member of
G, this is an example of a nonsymmorphic group—see the discussion at the end of Sec. 2.2, and
further remarks in Sec. 5
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4.4 Rectangular system: bricks

° ° ° ° °
° ¢-—--4-F---9 ° °
I I
° ° : ° : ° °
(a) } }
° b---q-}---4 ° °
. .................. . .................. . .................. . .................. . ............
° ° ° ° °

Figure 7: (a) A two-dimensional “brick” lattice. (b) The Bravais lattice with the bricks removed.
The dashed lines indicate the rectangular unit cell.

% The “brick lattice” in Fig. 7(a) illustrates the sort of symmetry which might arise from a
molecule of a rectangular shape. We have chosen the points on the Bravais lattice to lie at the
centers of the bricks, and Fig. 7(b) shows the lattice itself without the bricks so as to make its
geometrical character more apparent. The obvious choice for primitive translation vectors a; and
ay are those on two sides of a rhombus. However, they form a nonorthogonal coordinate system,
and certain calculations become a bit easier if one adopts a rectangular coordinate system given
by the perpendicular vectors a and b, with

r = fa+nb = (&) (29)

e A disadvantage of this coordinate system is that the points on the Bravais lattice occur not
only when £ and n are both integers, but also when both are half integers (i.e., half of an odd
integer). We shall call the latter “half-integer” points. Note that so far as crystal symmetry is
concerned there is no difference between integer and half-integer points on the Bravais lattice: the
crystal looks exactly the same from either. Instead, this slight peculiarity arises from our choice to
use a rectangular coodinate system.

e A single rectangle with edges a and b is referred to as a unit cell, and has twice the area of a
primitive cell, such as one of the rhombuses in Fig. 7(b).
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% By looking at Fig. 7 it is evident that there are no n-fold axes with n larger than 2. However,
one can sees various horizontal and vertical reflection lines. Hence the point group now consists of
{I,J, A, B} where A will denote a reflection in the y axis and B a reflection in the x axis. In other
words,

A(&m) = (&, —n), B(&n)=(=&n), JEn) =(=&-n). (30)

Since the square of any of these is I, and the product of any two of them is the third, the point
group is isomorphic to the four group V or Zs x Zs.

e By using (30) one can work out the multiplication table for the space group. For example
(Bl o) (Al ) = (T = s/ + ). (31)

Note that in the pair (u,v), either both p and v are integers, or they are both half integers, and
this is preserved on the right side, where both ' — p an v/ + v will both be integers or half integers.
Working out the entire table is a trifle tedious, so we will simply evaluate the products we need as
we go along.

% Inspection of Fig. 7 reveals various symmetry elements of the following sorts. (i) Various
2-fold rotations about different points. (ii) Reflections in various vertical lines, including some cases
in which a reflection is accompanied by a translation (not belonging to the Bravais lattice) parallel
to this line. See, for example, the vertical line located at £ = 1/4. (iii) Reflections in horizontal
lines, including some accompanied by translations parallel to the line.

* We known that (J|u,v) is a two-fold rotation, and, following the analysis in Sec. 4.2, the
rotation axis is located at £ = /2,7 = v/2. Setting p,v equal to 0,0, 0,1 and 1/2,1/2 we see
that there will be 2-fold axes at 0,0, 0,1/2 and 1/4,1/4. Other possible locations in the unit cell
are actually obtained from these three by symmetry operations. Thus 1/2,0 is of the same type as
0,1/2 since 1/2,—1/2 is in the Bravais lattice. A less obvious case is that of 3/4,1/4 which is the
same type as 1/4,1/4 if one employs a suitable reflection.

O Exercise. Show that elements of the group G of the form (J|t) fall into exactly three conjugate
classes corresponding to the three types of 2-fold rotation just discussed.

O Exercise. Can you explain why there are only three kinds of 2-fold rotation in this case
rather than four as in the example in Sec. 4.27 How has the additional symmetry made one kind
disappear?

% Elements of G of the form (A|u,v) represent reflections in a horizontal axis accompanied by
some sort of translation parallel to the axis. Since

(Alp,v)(&n) = (0 + & v —n) (32)

it is evident that a horizontal line at n = v/2 will be mapped to itself, and there will be a
corresponding horizontal translation by p. If 4 and v are both integers, this horizontal line passes
through points on the Bravais lattice and the horizontal translation is an integer multiple of the
distance between two successive points, so the result is indistinguishable from a simple reflection
in this line. On the other hand, when p and v are both half integers, the horizontal line passes
midway between two rows of Bravais lattice points, and since the corresponding translation is by
half an odd integer, the reflection in the line must be accompanied by a shift or glide of a/2 to
bring the pattern back on itself. The dotted line in Fig. 7(a) is the glide reflection line.

e Note that in this case, in contrast with the example discussed earlier in Sec. 4.3, (A|0,0)
belongs to GG, so this space group is symmorphic, see the remarks in Sec. 2.2.

e Elements of G of the form (B|u,v) can be discussed in exactly the same way, with reflections
in vertical lines replacing reflections in horizontal lines.
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O Exercise. Find a vertical glide reflection line in Fig. 7(a) and identify the corresponding u
and v, one of which is, of course, not unique, assuming the origin is the left lower corner of the
dashed unit cell.

4.5 Other systems in two dimensions

% The two systems of crystal symmetries in two dimensions not yet discussed are the square
and the hexagonal systems. See ITC for a full discussion of the different possibilities. An example
of the square system is the pattern shown in Fig. 8, and of the hexagonal system the pattern shown

in Fig. 9. Working out the properties is left as exercises.
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Figure 8: Structure forming a square lattice

X
o0

Figure 9: Structure forming a triangular lattice
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O Exercise. Construct a Bravais lattice for the pattern in Fig. 8. Identify the different symmetry
elements including translations, rotations, reflections. Classify them into different conjugacy classes.
Are there some glide lines? When finished (or before you finish, in case you get stuck) consult the
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ITC tables to check your results. In the Hermann-Mauguin notation used by the ITC tables what
is the symbol (’p’ followed by something) for this space group?

O Exercise. Same for the pattern in Fig. 8. Note that in this case the crystallographers do not
seem to prefer a rectangular unit cell, at least if the I'TC tables are a guide.

5 Nonsymmorphic Space Groups

5.1 Introduction

% The study of space groups is rendered more complicated (or more interesting, depending on
one’s perspective) by the possible presence of certain symmetry elements which combine operations
from the point group with translations that do not belong to the Bravais lattice. See the remarks
on nonsymmorphic groups at the end of Sec. 2.2.

e In two dimensions the new element is a glide reflection line, as in the example in Sec. 4.3

e In three dimensions these elements are of two kinds. A screw azis is a rotation by 2w /n
around some axis accompanied by a shift in the direction of this axis by some vector u not in 7. A
glide plane is a reflection in a plane accompanied by a translation parallel to the plane by a vector
u not in 7.

e As noted in Sec. 2.2, a nonsymmrphic space group arises when it is impossible to choose
the origin of the coordinate system in such a way that (A|0) is a member of G for every A in
the point group P. This, rather than the presence of screw axes or glide planes as such, is what
distinguishes nonsymmorphic space groups from symmorphic space groups. The latter may contain
screw axes or glide planes that arise “naturally” when operations in the point group are combined
with translations in the Bravais lattice; a two-dimensional example was discussed in Sec. 4.4.

5.2 Simple example

w /S S ]
N

(b) ° ® ° ®

Figure 10: Branching pattern (a) and corresponding Bravais lattice (b)

% A one-dimensional example illustrating some of the features of a nonsymmorphic space group
is shown in Fig. 10, and is closely analogous to the pattern discussed in Sec. 4.3. The branching
structure shows an obvious symmetry when translated to the right by half the lattice constant,
assumed for simplicity to be 1, but only if it is rotated about, or reflected in, the horizontal line.
Thus the space group consists of elements of the form (I|m) and (F|n + 1/2), where m and n are
any integers, and F represents the rotation (or reflection) operation. There is no way to eliminate
the 1/2 by shifting the origin of the coordinate system.

e The point group, which is {I, F'}, is obviously isomorphic to G/T', but in this case we cannot
express G as a semidirect product of G/T and T', but must use a more general extension.

O Exercise. Show that G cannot be reconstituted from G/7T and T using a semidirect product.
Hint: See the corresponding exercise in Sec. 3. What are the possible automorphisms of Z7

17



O Exercise. Construct G as an extension of {I, F'} by T.

6 Site symmetries

% In applications of space groups to solid state physics one often finds that atoms in a crystal
are located at particular sites where the symmetry is higher than at a general point in the primitive
or unit cell, and this additional symmetry can be used to make inferences about energy levels of
such atoms, or the behavior of nuclei undergoing magnetic resonance.

e A special site at point r( is characterized by the fact that in addition to (I|0) at least one
element of the space group leaves ry invariant:

(Alu)rg =u+ Arg =r9; (Alu)(rg+ Ar) =rg+ AAr. (33)

for some A other than [ in the point group P. The collection of elements of G of this type form a
subgroup, the stabilizer of r, and the corresponding subgroup of P defines the site symmetry.

e The ITC tables give locations of special sites and the corresponding point symmetry for each
of the space groups in two and three dimensions.
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