
CMU Quantum Information Programs in Mathematica

(Version 050, Date: 3 January 2006)

Robert B. Griffiths c© 2006

Contents

1 Introduction 2

2 Standard (Matrix) Representation 2
2.1 Kets, operators, dot product . 2
2.2 Orthonormal collections and bases . 4

3 Tensor Products 4
3.1 Kets . 4
3.2 Operators, n-tensors and o-tensors . 5
3.3 Building up kets and operators . 6
3.4 Permuting the order of factors . 7
3.5 Expanding a ket in an orthonormal basis . 8
3.6 Schmidt representation; entanglement . 8
3.7 Partial trace and partial transpose . 9

4 Pauli Representation and Bell States 10
4.1 Pauli representation . 10
4.2 Bell states . 11

5 Transforming Between Representations 12
5.1 Kets . 12
5.2 Operators: standard (matrix), o-tensor, and n-tensor forms 12
5.3 Pauli representation . 12

6 Kets, Projectors, Gates, Codes 13
6.1 Kets and projectors . 13
6.2 Gates . 13
6.3 Quantum codes . 14

7 Random Operations 14

8 Miscellaneous Functions 14

9 Probabilities and Conditional States 15
9.1 Born probabilities . 15
9.2 Conditional states . 16

10 A Simple Example 16

11 Acknowledgments 18

1

1 Introduction

This is a collection of Mathematica functions and other objects, such as lists representing
quantum gates, intended to be useful in quantum information studies of small quantum circuits.
Some prior knowledge of Mathematica is needed in order to make use of them, and the user will
probably want to combine them with his own definitions in order to achieve something useful.
An advantage of employing Mathematica is that one can carry out either symbolic or numerical
calculations. Many, though not all, of the functions in the collection can be used for either purpose.

All the objects are contained in a single master file qinfvvv.ma, where vvv is a version number,
and are documented in several ways. First, they are given one-line definitions in a single alphabetical
list, and these are repeated in various categories, in the header of the master file. Brief descriptions
accessible when running Mathematica are given in standard fashion (name::usage=) in the master
file just ahead of the actual definition. In some cases explanatory notes having to do with the
particular way a function has been defined have been inserted as a comment (*functionname:...*)
between the brief description and the actual definition. In a few cases there are duplicate definitions,
in which case the later one is that actually employed; by removing it or commenting it out the
user can employ the earlier one. Some functions defined in an earlier version of qinf are given in
qupdatevvv.ma.

Section 2 describes the way we represent quantum kets (vectors) and operators (matrices).
Section 3 takes up tensor products and the different ways in which kets and matrices are represented
as tensors. The Pauli representation of operators for one or several qubits is discussed in Sec. 4,
along with Bell states for two qubits. A summary of how to convert objects between different
representations is given in Sec. 5. A small set of kets, projectors, quantum gates, and quantum
codes are included in the collection, as described in Sec. 6. Section 7 describes functions for
generating random kets and unitary operators, and Sec. 8 a few miscellaneous functions which we
have found helpful. Section 9 takes up probabilities and conditional states. A simple three-qubit
example that illustrates how many of the features work will be found in Sec. 10. Contributors to
the project are acknowledged in Sec. 11.

2 Standard (Matrix) Representation

2.1 Kets, operators, dot product

We use a basic or standard or matrix representation in which a column vector or ket on an
N -dimensional Hilbert space is represented by a list, of complex numbers or symbolic variables, of
length N , thus

|ket〉 → ket = {e1,e2,...,eN}. (2.1)

A bra or row vector is represented in exactly the same way, and converting a ket to the corresponding
bra, or vice versa, is a matter of taking the complex conjugate, thus

bra = Conjugate[ket] = adjoint[ket], (2.2)

where an initial lower case letter indicates a function in our collection:
adjoint[] applied to a (possibly rectangular) matrix mt yields the complex conjugate of

its transpose.

2

An operator on the Hilbert space corresponds to an N ×N matrix, represented by a list of N
lists, each of the latter being one row of the matrix, as in the following 2 × 2 example:

(

〈1|M |1〉 〈1|M |2〉
〈2|M |1〉 〈2|M |2〉

)

→ {{〈1|M |1〉 , 〈1|M |2〉} , {〈2|M |1〉 , 〈2|M |2〉} }. (2.3)

Note that in Mathematica lists are indexed in such a way that the first element is 1, not 0, which
is why the kets in (2.3) are |1〉 and |2〉, rather than the |0〉 and |1〉 which are nowadays customary
for a two-dimensional (single qubit) Hilbert space. Using these conventions allows one to employ
the Mathematica dot operation, so that

〈kt1| kt2〉 → adjoint[kt1]. kt2, (2.4)

〈kt1|matrix|kt2〉 → adjoint[kt1]. matrix. kt2. (2.5)

These can also be written using the function
ketinner[kt1,kt2], the inner product of kt1 and kt2, defined by the right side of (2.4).

Products of operators can also be taken care of using a dot. For example, if unitar is an N×N
unitary matrix corresponding to time development from t0 to t1, then

kt1 = unitar. kt0, rho1 = unitar. rho0. adjoint[unitar], (2.6)

where kt0 and kt1 are lists of length N representing the initial and final kets, whereas rho0 and
rho1 are N ×N matrices representing the initial and final density operators.

One of the less attractive features of Mathematica is its awkward method for handling symbolic
complex variables, in contrast to numerical constants. In particular, complex conjugation attaches
Conjugate[] to all sorts of symbols, and the only way of getting rid of it for symbols denoting real
quantities is to use ComplexExpand[], which has its own peculiarities. This is why our collection
provides two alternatives to adjoint[], which are sometimes, but not always, helpful in reducing
the mess:

adjointr[mt] is the transpose of mt and thus its adjoint if mt is real.
adjointc[mt] is adjoint[mt] followed immediately by ComplexExpand[].

It is often convenient to use normalized kets, and
ketnorm[kt] normalizes kt (assumed not to be zero) by multiplying it with a positive

constant. Similarly,
ketnormr[kt] will produce a normalized version of kt when it is real.

In a similar way
pop2dop[mt] multiplies the operator mt (assumed to be positive semi-definite) with a

positive number to produce a trace 1 density matrix.

The function
dyad[kt1,kt2] produces the operator |kt1〉〈kt2| as a matrix. It is not necessary that

kt1 and kt2 have the same dimension; if they do not, the result is an appropriate dim1×dim2
rectangular matrix. The alternative

dyadr[kt1,kt2] is useful for real kets containing symbolic elements if one wants to avoid
Conjugate[], whereas

dyadc[kt1,kt2] includes the complex conjugate, but immediately applies ComplexExpand[]
in hopes of reducing complications at an early stage.

3

In the case of a normalized ket kt the corresponding projector is produced by
dyap[kt]=dyad[kt,kt].

The matrix (Hilbert-Schmidt) inner product can be written as

〈A,B〉 := Tr[A†B] → Tr[adjoint[mta]. mtb] = matinner[mta, mtb]; (2.7)

matinner[mta, mtb] is the sum of the products of the corresponding matrix elements of
mta and mtb when the former have been complex conjugated. This is faster for large matrices than
calculating the matrix product (mta . mtb) and then taking the trace. Note that mta and mtb

can be rectangular, provided they both have the same shape: the same number of rows and the
same number of columns.

2.2 Orthonormal collections and bases

We follow the convention that a collection of m kets, each of dimension n is to be thought of
as a list of m lists, each of length n, which one can think of as an m × n matrix. This agrees
with the Mathematica convention in the function Eigenvectors[], but has the awkward feature
that while one normally thinks of kets as column vectors, they are here represented as row vectors.
Transpose[] will convert a collection of row vectors to a collection of column vectors; the only
danger is that one may forget to do this. When m = n and the rows are normalized and mutually
orthogonal, the collection of rows, i.e., the list of lists, forms an orthonormal basis, and when we
refer to such a basis we shall think of the rows (rather than the columns) as the elements of the
basis.

coeffs[kt,abasis] returns as a list the expansion coefficients {cj} in |kt〉 =
∑

j cj |aj〉,
where the orthonormal basis {|aj〉} is represented by the matrix abasis, whose first row corresponds
to |a1〉, second row to |a2〉, etc.

Mathematica has a Gram-Schmidt orthogonalization procedure in the package
LinearAlgebra`Orthogonalization`, which we have not succeeded in getting to work properly for
the case at hand with its complex inner product. In this collection the task is carried out by

grschm[ls] produces from a list ls of m linearly-independent kets, each an n-component
vector, an orthonormal set as a list of m lists of length n.

grschmr[ls] does the same thing as grschm[ls] when all the kets are real.

3 Tensor Products

3.1 Kets

On a tensor product H1 ⊗H2 ⊗· · ·Hn of Hilbert spaces with dimensions d1, d2 . . . dn, a ket can
be represented as an n-component tensor

〈j1, j2, . . . jn|kt〉 → kt[[j1,j2, .. ,jn]], (3.1)

where jm → jm lies between 1 and dm, and labels an orthonormal basis. In Mathematica such
a tensor is a list of lists of lists, etc., with jn labeling elements in the innermost lists, and one
references a particular element using the [[...]] notation indicated in (3.1). In addition to this
tensor or k-tensor representation, the same ket can be expressed in the standard representation

(Sec. 2) as a single vector or list of d = d1d2 · · · dn complex numbers, assuming an ordering in

4

which the last index varies most rapidly. Thus for n = 2, j1, j2 precedes k1, k2 if j1 < k1, or
if j1 = k1 and j2 < k2. Our collection contains the following functions to map kets from one
representation to the other:

ket2kten[kt,dl] assumes that kt is a single list, and returns the corresponding tensor
form as a nested list as determined by

dl ={d1,d2,...,dn}, a dimension list, with dj the dimension the Hilbert space Hj . If all
dimensions are 2 (one is dealing with qubits), one can omit the dimension list and use

ket2kten2[kt] assumes a tensor product of two-dimensional spaces, and converts kt to
tensor form. The final 2 in a function name indicates it is designed for use with qubits. The
function assumes, without checking, that the length of kt is a power of 2.

kten2ket[kten] is the same as Flatten[], so requires no dimension list, and in such cases
we do not define a separate function for qubits.

In the case of product spaces involving only qubits, a quite common notation for kets is ex-
emplified by |010〉, meaning that the first and third qubits are in the |0〉 state and the second is
in the |1〉 state. Let us call this the binary representation. The convention given above makes
|010〉 correspond to a third rank tensor kt in which kt[[1,2,1]]=1 and all other components are
zero. (Note the necessity of adding a 1 to each bit in | · · ·〉, because in a Mathematica list the first
element is 1, not 0.) The function

bket[...,n], as in |0010〉 → bket[0010,4], where the second argument is the number of
qubits, yields the corresponding ket in standard form; e.g., a list of length 16 if n is 4. One can
multiply such kets by scalars, and when n is the same add them, as in

1.5|0101〉 + (1.2 + 3)i|1100〉 → 1.5*bket[0101,4] + (1.2+3 I)*bket[1100,4]. (3.2)

An alternative is provided by
bin2ket[ls], which takes a list ls of n 0’s and 1’s, and converts it into the corresponding

2n-component ket:
1.5|0101〉 → 1.5*bin2ket[{0,1,0,1}]. (3.3)

Its inverse is the function
ket2bin[kt], which converts a vector ket kt to a list of terms in binary form. If, for

example, kt is the vector produced by the right side of (3.2), the output of ket2bin[kt] is

{{1.5, |0101>}, {1.2 + 3 I, |1100>}}. (3.4)

While less legible than the right side of (3.2), this may still be preferable to the corresponding
vector

{0, 0, 0, 0, 0, 1.5, 0, 0, 0, 0, 0, 0, 1.2 + 3 I, 0, 0, 0} (3.5)

3.2 Operators, n-tensors and o-tensors

We employ two different tensor representations for operators, corresponding to the following
two ways of writing an operator W acting on the tensor product of two spaces in Dirac notation:

W =
∑

〈j, k|W |j′, k′〉
(

|j, k〉〈j′, k′|
)

=
∑

〈j, k|W |j′, k′〉
(

|j〉〈j′| ⊗ |k〉〈k′|
)

, (3.6)

We shall refer to them as the n form or n-tensor or normal representation, and the o form or
o-tensor or dyad representation, respectively. One can think of “n” as standing for “normal” and

5

“o” as the first letter in “otimes”, the symbol ⊗. Thus we have—note once again that the possible
values for j, etc., start at 1, not at 0—

nW[[j,k,j’,k’]] = 〈j, k|W |j ′, k′〉 = oW[[j,j’,k,k’]], (3.7)

with an obvious generalization to a tensor product of 3 or more spaces. Both tensor representations
of W are distinct from the standard or matrix representation introduced in Sec. 2.1. When thinking
of 〈j, k|W |j′, k′〉 as a matrix, we regard (j, k) as a double label for rows using the same ordering
convention discussed above following (3.1): the order of the rows from top to bottom is (1, 1), (1, 2),
. . . (2, 1), (2, 2), The same ordering applies to the double label (j ′, k′) for the columns.

If instead of an operator on H1⊗H2, W is thought of as a linear map from H′
1⊗H′

2 to H1⊗H2,
its matrix may be rectangular and, indeed, the dimensions of all four spaces may be different.
We allow for this possibility in functions which convert from one representation to another by
generalizing the notion of a dimension list, Sec. 3.1, to

ddl = {{d1a,d1b},{d2a,d2b}...}: a double dimension list, where d1a and d1b are the
dimensions of H1 and H′

1, i.e., the number of rows and columns in a matrix representing a map
from H′

1 to H1. Where a double dimension list is expected, our functions will accept a single list
or a mixed list, and convert it to the required double list, e.g., they will convert

{3,2,{5,3}} → {{3,3},{2,2},{5,3}}. (3.8)

(Be careful: an extra {} as in {3,{2},{5,3}} will produce an error!)
Here are functions for converting an operator from one representation to another. Note that

a double dimension list ddl, which could also be a single list dl or a mixture as on the left side
of (3.8), is required when converting a matrix to an n-tensor or o-tensor, because a given matrix
might correspond to various different tensors, but is not needed for the other conversions. It can
be omitted in the case of qubits (all factor spaces are 2-dimensional) by using the functions with
names ending in 2. These functions do not check that the matrix has dimensions consistent with
ddl, or is a 2n × 2n matrix in the case of qubits.

mat2nten[mt,ddl] converts a (standard) matrix mt to an n-tensor using the (double)
dimension list ddl.

mat2nten2[mt] assumes that mt is a 2n×2n matrix, and returns the corresponding n-tensor.
mat2oten[mt,ddl] converts a (standard) matrix mt to an o-tensor using the (double)

dimension list ddl.
mat2oten2[mt] assumes that mt is a 2n × 2n matrix, and converts it to an o-tensor.
nten2mat[ntn] converts the n-tensor ntn to a (standard) matrix.
nten2oten[ntn] converts the n-tensor ntn to the corresponding o-tensor.
oten2mat[otn] converts an o-tensor otn to a (standard) matrix
oten2nten[otn] converts an o-tensor otn to an n-tensor

3.3 Building up kets and operators

One often faces the problem of starting with kets or operators which refer to particular factor
spaces of a tensor product and constructing their counterparts on the full tensor product space.
There are various functions which assist in carrying out this task. One of the most useful is

outer[tn1,tn2,...]=Outer[Times,tn1,tn2,...], which gives the tensor product of an ar-
bitrary number of tensors: if they are one-dimensional vectors or kets, the result is a k-tensor in

6

the notation of Sec. 3.1; if they are (possibly rectangular) matrices, the result is an o-tensor in the
notation of Sec. 3.2. Based on this are:

ketprod[kt1,kt2,...] produces the ket (as a vector, not a tensor!) |kt1〉 ⊗ |kt2〉 ⊗ · · ·
on the space H1 ⊗H2 · · · . In the case of qubits it may sometimes be simpler to use the functions
bket[] or bin2ket[] described above in Sec. 3.1.

tenprod[mt1,mt2,...] generates the (standard representation) matrix corresponding to
mt1⊗ mt2⊗ · · · , where the matrices mt1, mt2,. . . can be rectangular and of different sizes.

Another task is best illustrated by means of an example. Suppose one is constructing unitary
operators for a collection of three qubits, and wants to apply a particular one-qubit gate W ,
represented by a 2 × 2 unitary matrix ww, to the third qubit. The 8 × 8 matrix representing
I ⊗ I ⊗W is produced by the function

expandout[ww,{3},{2,2,2}], where the first argument is the 2×2 matrix ww representing
the one-qubit operator, the second—note curly brackets indicating a one-member list—indicates it
is to be applied to the third factor in the tensor product, and {2,2,2} is the associated dimension
list. Changing {3} to {1} would result in an 8×8 matrix representing W ⊗I⊗I. As we are dealing
with qubits, the same matrix is produced by

expandout2[ww,{3},3], where the number of qubits 3 replaces the dimension list as the
third argument.

Next, suppose we want the 8 × 8 matrix representing a controlled-not gate acting between the
third qubit (as control) and the second qubit (as data). Included in our collection is cnot, a 4 × 4
matrix representing the controlled-not operation between two qubits, with the first the control and
the second the data qubit. The desired 8 × 8 matrix is generated by either of the functions

expandout[cnot,{3,2},{2,2,2}],
expandout2[cnot,{3,2},3],

where the second argument, {3,2}, is a list that tells expandout[] or expandout2[] which qubits
the gate is to act on, and which of these is the control. Replacing {3,2} with {2,3} would make
qubit 2 the control and qubit 3 the data. The function expandout[], but not expandout2[], can
be used for tensor products of spaces with dimensions larger than 2 by using a suitable dimension
list dl as the final argument.

There are special functions for producing tensor products of Pauli matrices (including the
identity):

sigl[ls] is the tensor product of the Pauli operators in the list ls; e.g., sigl[{1,0,3}]
is σx ⊗ I ⊗ σz.

sigprod[j,k,...] yields σj ⊗ σk ⊗ · · · .
Finally, the function

copygate[W,n], returns, as a matrix in standard form, the tensor product of a matrix W

with itself n times: W ⊗W ⊗ · · · .

3.4 Permuting the order of factors

Sometimes one has a tensor product A ⊗ B ⊗ C and wants to convert expressions to a differ-
ent order of the factors, say C ⊗ A ⊗ B. If one is using the tensor forms, this can be done using
Transpose[], with its second argument a suitable permutation. Our collection includes functions
that carry out the appropriate transformations on kets and square matrices in the standard repre-
sentation:

7

permket[kt,pm,dl] converts kt, defined on a tensor product with dimension list dl, to
the form appropriate for a new ordering of the factors determined by the permutation pm. Suppose,
for example, that kt is in standard form, a list of 24 complex numbers, for the tensor product
A⊗B ⊗ C, where da = 2, db = 3, and dc = 4, corresponding to a dimension list dl = {2,3,4}. To
convert this to the corresponding ket in standard form for C ⊗A⊗B, the appropriate permutation
is pm = {2,3,1}, interpreted as 1 → 2, 2 → 3, 3 → 1. Think of it as “1 (A) moves to (position)
2, 2 (B) moves to (position) 3, and 3 (C) moves to (position) 1.” After the conversion the old
dimension list dl is no longer valid, and for further operations it needs to be replaced by

dlp = permute[dl,pm]. (For the present example dlp = {4,2,3}.) In the same way
permmat[mt,pm,dl] converts the matrix mt of an operator on a tensor product with di-

mensions given by the list dl to that appropriate when the factors have been rearranged according
to the permutation pm. Both mt and the new matrix represent an operator in standard form. See
the example in the previous paragraph for the meaning of pm, and note that the rearrangement
corresponds, in general, to a new dimension list dlp = permute[dl,pm].

3.5 Expanding a ket in an orthonormal basis

Let A = {|aj〉} be an orthonormal basis of an n-dimensional Hilbert space A, which is the first
factor in a tensor product H = A⊗ B. Any ket |ψ〉 on H can be written in the form

|ψ〉 =
∑

j

|aj〉 ⊗ |βj〉, (3.9)

where the expansion coefficients {|βj〉} are kets on B which, in general, are neither normalized nor
mutually orthogonal. The function

ketcofs[psi,abasis,dl] returns the coefficients {|βj〉} as a list {|β1〉, |β2〉, . . .}. Here
abasis is the orthonormal basis for A, a matrix (list of lists) in which the first row (list) represents
the first basis ket, etc. (see Sec. 2.2), and each |βj〉 is itself a list of db elements, where db is the
dimension of B, and dl = {da,db} is the dimension list for the spaces A and B.

If |ψ〉 is a ket in a tensor product H = A ⊗ B ⊗ C of three spaces, one can again employ
ketcofs[psi,abasis,dl] with dimension list dl = {da,db,dc}, to provide the expansion coeffi-
cients, which are now kets (in standard form) on B ⊗ C, for |ψ〉 in terms of the orthonormal basis
abasis of A. Since both |ψ〉 and the expansion coefficients are in standard form (single lists, not
tensors), the tensor product structure of B ⊗ C plays no role. The same procedure works for a
tensor product of A with three or more spaces.

There is no special function for giving the coefficients, as kets on A, when |ψ〉 on A ⊗ B is
expanded in the orthonormal basis B = {|bj〉} of B. To do this it is necessary to first apply
permket[], Sec. 3.4, to psi in order to interchange the order of A and B, and then use ketcofs[]

with the B basis and the dimension list {db,da}. Similar procedures can be used for tensor products
of three or more spaces.

3.6 Schmidt representation; entanglement

The Schmidt representation

|ψ〉 =
∑

j

λj |aj〉 ⊗ |bj〉 (3.10)

8

is a special case of the expansion (3.9) in which both the {|aj〉} and the {|bj〉} are orthonormal
bases, and the Schmidt coefficients {λj} are nonnegative numbers. The function

schmidt[kt,dl] finds the Schmidt decomposition of |kt〉, and returns a list

{{λ1, |a1〉, |b1〉}, {λ2, |a2〉, |b2〉}, . . .} (3.11)

in which the |aj〉 and |bj〉 are themselves lists. If Schmidt coefficients are smaller than some
specified number (10−8 in the function as written; the user can, of course, change that) they
are simply discarded along with the associated |aj〉 and |bj〉. Thus while {|aj〉} and {|bj〉}, are
orthonormal collections of the same length, they need not actually be bases of A and B. The
function schmidt[kt,dl] only works when kt is numerical, and will fail if it contains symbolic
elements.

Other functions in this category include:

schmidt2ket[ls] returns the original kt when given a list ls produced by schmidt[];
i.e., it is the inverse of schmidt[].

schmidtprobs[kt,dl] returns as a list the Schmidt probabilities {p1 = λ2
1, p2 = λ2

2, . . .},
but does not supply the kets of the two orthonormal bases. For this reason it is faster than
schmidt[]. If kt is not normalized the function will again return the {λ2

j}, but they can no longer
be interpreted as probabilities.

schmidtproj[ls] returns the projector
∑

j |aj〉〈aj | ⊗ |bj〉〈bj | when given a list ls of the
form produced by schmidt[].

The entanglement of a normalized ket |ψ〉 on A ⊗ B is defined as the Shannon entropy of the
probability distribution {λ2

1, λ
2
2, . . .} generated by the Schmidt coefficients in (3.10). The function

entang[kt,dl], with dl = {da,db} the appropriate dimension list, will first normalize kt

and then calculate the entanglement using logarithms to base 2. Again, this function as written
will only work when kt is a list of numbers, not symbols.

A Renýı entanglement equal to minus the logarithm to base 2 of the trace of the square of the
reduced density operator on one subsystem is computed by

entsq[kt,dl], with dl = {da,db} the dimension list. This function first normalizes the
ket, and will only work when the ket is numerical, not symbolic.

3.7 Partial trace and partial transpose

The Mathematica Tr[] yields the trace of a square matrix. When using a tensor product, one
often wants to find the partial trace of an operator over one or more of the factor spaces. To this
end we provide two functions:

partrace[mt,q,dl] takes a matrix mt on a tensor product H1⊗H2 · · ·Hn, with dimensions
dl = {d1,d2,...dn}, and returns the corresponding matrix with the space Hq traced out. For
example, if dl = {2,3} and q=2, mt must be a 6× 6 matrix, and the output will be a 2× 2 matrix.
(Note that both input and output are in standard form.)

traceout[mt,ls,dl] is similar to partrace, except that now ls is a list of spaces to be
traced out. E.g., traceout[mt,{2,4},{2,2,2,2}] starts with a 16 × 16 matrix mt on a system
of four qubits, traces out qubits 2 and 4, and returns a 4 × 4 matrix representing an operator on
qubits 1 and 3. (While the same thing could be done by repeatedly applying partrace, the need
to keep changing the dimension list would make it confusing.)

Sometimes it is useful to calculate the partial transpose of a matrix representing an operator.
On A ⊗ B with orthonormal bases {|aj〉} and {|bk〉}, the partial transpose P TA relative to {|aj〉}

9

of an operator P is defined by

〈aj , bk|P TA|aj′ , bk′〉 = 〈aj′ , bk|P |aj , bk′〉. (3.12)

Note that the partial transpose of an operator defined in this way depends upon the choice of
basis {|aj〉} (but not {|bk〉}) relative to which it is taken. To carry out such an operation, and its
generalization to the tensor product of three or more spaces, the collection contains the function:

partrans[mt,q,dl] takes a matrix mt (in standard form, a list of lists) on the tensor
product of spaces described by the dimension list dl, and returns its partial transpose (again in
standard form), relative to the standard basis—i.e., the basis used to define the matrix—on factor
space q. E.g., for the case in (3.12) one would use partrans[mt,1,{da,db}].

4 Pauli Representation and Bell States

4.1 Pauli representation

In the case of qubits (2-dimensional spaces) and tensor products of qubits it is often convenient
to use the Pauli representation for operators. Thus for an operator V on the space of one qubit
one writes

V =
3

∑

j=0

vjσj → Sum[v[[j+1]]*sig[j],{j,0,3}], (4.1)

where we use the convention that σ0 = I is the identity, and the σj for j = 1, 2, 3 are σx, σy and
σz, respectively. In our collection the Pauli matrices the σj form an array:

sig[j], with j taking on the values 0, 1, 2, and 3. E.g., sig[3] = {{1,0},{0,-1}}. Using
an array rather than a list is convenient if one wants j to start with 0, but leads to the awkward
appearance of both j and j+1 in (4.1). On a tensor product of two qubits the corresponding
expression is

W =
3

∑

j=0

3
∑

k=0

wjkσj ⊗ σk →

Sum[w[[j+1,k+1]]*tenprod[sig[j],sig[k]],{j,0,3},{k,0,3}]. (4.2)

We use the term Pauli coefficient tensor, or simply Pauli tensor, abbreviated as ptn, when referring
to v[[]], w[[]], and the like. The function

mat2paul[mt] generates the Pauli (coefficient) tensor from the matrix mt in the standard
representation, assuming (without checking!) that mt is 2n × 2n for some integer n, while

paul2mat[ptn] carries out the reverse process on the Pauli tensor ptn.
One can generate a Pauli tensor directly using

paulten[j,k,...], where, for example, paulten[1,0,3] is the tensor corresponding to
σx ⊗ I ⊗ σz. For the corresponding matrix, use paul2mat[paulten[...]]. One can multiply
by scalars and add, thus

ptn = 4 paulten[0,0,3] + (5+2 I) mu paulten[2,1,3] - 6 nu paulten[2,3,1] (4.3)

corresponds to

4
(

I ⊗ I ⊗ σz

)

+ (5 + 2i)µ
(

σy ⊗ σx ⊗ σz

)

− 6ν
(

σy ⊗ σz ⊗ σx

)

. (4.4)

10

Interpreting the Pauli tensor written in the standard Mathematica format as a list of lists of
lists, etc., can be rather daunting, so the following output function can be helpful:

prtpaul[ptn] uses Print[] to display the nonzero elements of the Pauli tensor ptn in the
following form when ptn has been defined by (4.3):

c[0,0,3]= 4 c[2,1,3]= (5 + 2 I) mu c[2,3,1]= -6 nu (4.5)

Thus c[0,0,3] is the coefficient of I ⊗ I ⊗ σz, and so forth. While not as legible as (4.4), it is at
least a step in the right direction in comparison to examining ptn as a list of lists of lists.

Eliminating zero elements is a helpful feature of prtpaul[], but if the tensor contains floating
point numbers the “chop” version may be more useful:

prtpaulch[ptn,ep] uses Chop[] to eliminate numbers of absolute value less than ep, where
if the second argument is not indicated, prtpaulch[ptn] will use a default value of 10−10, which
the user can alter by modifying the helper function paulnzch[].

To print out the Pauli form of an operator on a set of n qubits in the form indicated in (4.5)
it is first necessary to convert it to a Pauli tensor using mat2paul[] before applying prtpaul[].
The user can, of course, define a single function combining both, but we have found that when
dealing with symbolic expressions it is often, though not always, useful to apply Simplify[] at
the intermediate stage.

4.2 Bell states

For two qubits one sometimes makes use of a basis of fully-entangled Bell states on the four-
dimensional product space. They can be defined and labeled in various different ways, and our
collection includes three possibilities, in each case given as an array of four kets labeled bell[j] for
0 ≤ j ≤ 3 (or sbell[j] for the special Bell basis). Conversions between the standard basis (|00〉,
etc.) and the Bell basis can be carried out using two matrices, bellbas and its adjoint basbell,
in the following manner,

ktbell = basbell . kt, kt = bellbas . ktbell, (4.6)

where kt and ktbell are the coefficient lists for the same ket in the standard and Bell representa-
tions, respectively. The conversion of matrices can be done using the dot product or by employing
the corresponding functions,

mtbell = mat2bell[mt] = basbell . mt . bellbas (4.7)

mt = bell2mat[mtbell] = bellbas . mtbell . basbell (4.8)

Here mt and mtbell refer to matrices of the same operator in the standard and Bell bases, respec-
tively.

In the function list two versions of the Bell basis are given. The second is the one which will be
used if the file is read in as is, but the user can delete it or comment it out or replace it with his
own definitions. In addition a “special Bell basis” (sometimes referred to as a “magic Bell basis”)
called sbell[j] is given, along with matrices bassbell, sbellbas and functions mat2sbell[],
sbell2mat[], that are the obvious counterparts to those discussed above.

11

5 Transforming Between Representations

We have introduced four representations for operators: standard (matrix), n-tensor, o-tensor,
and, in the case qubits, the Pauli representation. Kets have only a standard (vector) representation
and a single tensor (k-tensor) representation. Here is a summary of the functions in our collection
which transform operators and kets from one representation to the other.

5.1 Kets

To convert a ket kt to the tensor (k-tensor) form, which can be considered either an o-tensor
or an n-tensor, use

ket2kten[kt,dl], for the general case with a dimension list dl, or
ket2kten2[kt] for qubits.

The inverse transformation
kten2ket[ktn] is a fancy name for Flatten[ktn], and also works for qubits.

In the case of qubits, note the additional functions
bket[...] creates kets (vectors or lists) corresponding to |001〉 =bket[001,3] and the

like, while
bin2ket[ls] does the same thing for a list ls of 0’s and 1’s; |001〉 =bin2ket[{0,0,1}].

The inverse function
ket2bin[kt] takes a vector kt and produces a form involving coefficients of |001〉 and the

like as in (3.4).

5.2 Operators: standard (matrix), o-tensor, and n-tensor forms

See Sec. 3.2 for definitions, and note that one can, in the “square” case, use a single dimension
list dl in place of the double list ddl, or a mixed list as in (3.8).

Matrix to n-tensor or o-tensor:
mat2nten[mt,ddl] for (double) dimension list ddl.
mat2nten2[mt] for qubits; no dimension list needed.
mat2oten[mt,ddl] for (double) dimension list ddl.
mat2oten2[mt] for qubits; no dimension list needed.

Tensors to matrices:
nten2mat[ntn]

oten2mat[otn]

One kind of tensor to another:
nten2oten[ntn]

oten2nten[otn]

5.3 Pauli representation

The following functions only apply to tensor products of qubits; for more details, see Sec. 4.1.
oten2paul[otn] yields the Pauli tensor corresponding to the o-tensor otn.
paul2oten[ptn] converts the Pauli tensor ptn to an o-tensor.

These and the matrix-to-o-tensor conversions mentioned above are combined in the functions:
mat2paul[mt] converts the matrix mt to a Pauli tensor, and
paul2mat[ptn], which carries out the inverse operation.

12

6 Kets, Projectors, Gates, Codes

6.1 Kets and projectors

The following kets for qubits are provided as two-element arrays, with j = 0 corresponding to
the positive and j = 1 to the negative intersection of the axis with the Bloch sphere

xket[j] for j=0,1
yket[j] for j=0,1
zket[j] for j=0,1: zket[0]={1,0}, zket[1]={0,1},

A normalized ket corresponding to the point r={x,y,z} on the Bloch sphere, x2+y2+z2=1, is pro-
duced by

blochket[{x,y,z}].
Users who dislike our choice of phases should substitute their own.

The projectors
xprj[j]=dyap[xket[j]] for j=0 and j=1

yprj[j]=dyap[yket[j]] for j=0 and j=1

zprj[j]=dyap[zket[j]] for j=0 and j=1

are 2×2 matrices which are, of course, independent of the phase conventions used for the kets. For
example, zprj[1]={{0,0},{0,1}}.

6.2 Gates

The following one qubit gates are 2 × 2 unitary matrices. To use them for circuits of several
qubits, one must first apply expandout[] or expandout2[] as discussed in Sec. 3.3.

hgate is the Hadamard gate: {{1,1},{1,-1}}/Sqrt[2]
xgate, ygate, zgate are the same as σx, σy and σz, identical to sig[1], sig[2], sig[3].
rgate[j,th] has arguments j=1, 2, or 3, for x, y and z, and th an angle in radians. For

example, rgate[2,Pi/2] is the same as exp[−i(π/4)σy], a rotation of the Bloch sphere by an angle
of π/2 about the y axis.

The following two-qubit gates are included:
cnot is a controlled-not gate, with the first qubit the control.
cphase is a controlled-phase gate for two qubits.
exchg exchanges two qubits,

For a space of arbitrary dimension:
fourierg[n] is an n×n matrix representing the quantum Fourier transform; to be specific,

the j, k element is e2πi(j−1)(k−1)/n/
√
n if j and k take values between 1 and n. On the other hand

fouriern[kt], the same as Fourier[kt], can be used to evaluate the Fourier transform
applied to the ket kt when it is a vector of complex numbers, and will be faster than first computing
qft=fourierg[n] and then qft . kt.

ident[n], the same as IdentityMatrix[n], is the n× n identity matrix.

In addition, the following special constructions are provided.
copygate[W,n], returns, as a matrix in standard form, the tensor product of a matrix W

with itself n times: W ⊗W ⊗ · · · .
cgate[W] will produce a controlled -W gate: a matrix (in standard form) on A⊗B, with A

the controlling qubit, and B the d-dimensional space on which W acts. The resulting operator is

|0〉〈0| ⊗ I + |1〉〈1| ⊗W. (6.1)

13

For example, cgate[xgate] is the controlled-not gate, while cgate[cnot] is the 8 × 8 matrix for
a Tofolli gate with the third qubit controlled by the first two.

6.3 Quantum codes

The simplest quantum codes are two-dimensional (one qubit) subspaces on tensor products of
n qubits. We provide a pair of orthonormal basis vectors (as a list) for four well-known examples:

threecode, n = 3
fivecode, n = 5
sevencode, n = 7
ninecode, n = 9

The first is the three-qubit code that corrects bit-flip errors, while each of the others can correct
any error on just one of the n qubits carrying the code. See Ch.10 of M. A. Nielsen and I. L. Chuang,
Quantum Computation and Quantum Information, (Cambridge University Press, 2000) for details.

7 Random Operations

The functions listed below were designed to provide random kets and orthonormal collections of
kets. They employ Random[] and and RandomArray[] for a NormalDistribution[]. If one wants
to get the same “random” sequence every time one runs a particular program, one should insert
SeedRandom[int], with a particular choice of the integer int, before the first call to one of the
following functions. The distributions generated by the functions given below are invariant under
unitary transformations of the Hilbert space.

ranbas[n] returns a random basis for a complex Hilbert space of dimension n as a list of
basis vectors, each basis vector a list of n complex numbers.

ranket[n] returns a normalized random ket on a complex Hilbert space of dimension n, a
single list of n complex numbers.

ranorn[m,n] produces a random orthonormal collection of m (complex) kets on an n-
dimensional complex Hilbert space as a list of m elements, each a list of n complex numbers (thus
as an m×n matrix). For m=1 the result is the same as ranket[n], and for m=n it is the same as
ranbas[n].

On a real Hilbert space of dimension n the counterparts of the functions just mentioned are
ranbasr[n]

ranketr[n]

ranornr[m,n]

For two qubits,
ranbell will generate a random orthonormal basis of fully-entangled states as a list of four

kets.

8 Miscellaneous Functions

A few additional functions not discussed earlier, which have turned out to be of some use, are
the following:

diags[mat] returns the diagonal elements of the square matrix mat as a list; it is the
inverse of DiagonalMatrix[].

14

entropy[ls] gives the Shannon entropy H (log base 2) of a list ls of probabilities.
invperm[pm] returns the inverse permutation to pm

matinp[mta,mtb] finds the trace of mta.mtb without evaluating the full matrix product,
so is faster than Tr[mta.mtb]; it is similar to matinner[] defined in Sec. 2.1.

matinq[mta,mtb] is the sum over j and k of mta[[j,k]]*mtb[[j,k]] whenever this makes
sense; in particular, it is Tr(ATB) for (possibly rectangular) matrices A and B. Can also be used
when mtb is a tensor of rank greater than 2.

matnorm[mt] normalizes each row of the matrix mt.
outer[tn1,tn2,...]= Outer[Times,tn1,...] is the outer product of tn1, tn2. . . .
permute[ls,pm] applies permutation pm to list ls; thus

permute[{a,b,c},{2,3,1}] = {c,a,b}.
permutmat[pm] is the matrix for permutation pm; thus

permutmat[{2,3,1}].{a,b,c} = {c,a,b}.
prodlist[ls] is the product of the elements in the list ls.
quadn[ob] is the quadratic norm, the sum of the absolute squares of all of the elements,

of ob, which can be a ket, a matrix, or a tensor of any rank,
quadr[ob] is the sum of the squares of the elements of ob, thus the same as quadn[] when

these elements are real.
sumlist[ls] gives the sum of the elements in the list ls.
transpose[] is the same as Transpose[], except that when given the (simple) list corre-

sponding to a ket (vector), it returns the list rather than an error message.
The collection also includes functions which are helper functions called by other functions; these

are listed in the header of the master file.

9 Probabilities and Conditional States

There are no functions in the collection designed specifically for calculating probabilities of
measurement outcomes, or (“collapsed”) quantum states conditional on measurement outcomes.
These can be computed in the manner indicated below.

9.1 Born probabilities

The Born rule expresses the probability at time t1 for a quantum property represented by a
projector P=proj as

Pr(P) = 〈ψ1|P |ψ1〉 = ketinner[kt1,pproj. kt1], (9.1)

where the normalized |ψ1〉 = kt1 is obtained from an earlier initial state |ψ0〉 = kt0 by unitary
time evolution, as in (2.6). In the case of a density operator the corresponding expression is

Pr(P) = Tr(ρ1P) = Tr[rho1. pproj] = matinner[rho1, pproj], (9.2)

where ρ1 has evolved from from an initial state ρ0, again see (2.6). (Using matinner[] rather
than Tr[] speeds things up for large matrices.) If the projector P = |φ〉〈φ| corresponds to the
normalized ket |φ〉 =ktp, the probability |〈φ|ψ1〉|2 or 〈φ|ρ1|φ〉 can be calculated using

Pr(P) = Abs[ketinner[ktp,kt1]]^2 or Pr(P) = adjoint[ktp].rho1.ktp. (9.3)

15

The analogs of (9.1) or (9.2) can be used for POVM’s by replacing P with the appropriate
positive operator(s). We provide no special functions for constructing positive operators or projec-
tors, aside from the small set for qubits described in Sec. 6.1. These can be extended to systems of
multiple qubits using the functions as described in Sec. 3.3.

9.2 Conditional states

If the measurement of some qubit yields the result |0〉, what conditional quantum state is to
be assigned to the remainder? If the system is described at the time t1 of a measurement on the
first qubit by a pure state |ψ1〉, the answer is obtained by expanding this ket in the form (3.9) with
|a0〉 = |0〉, |a1〉 = |1〉, using ketcofs[] (see the discussion in Sec. 3.5) and using the appropriate
|βj〉, which would be |β0〉 in case the measurement outcome corresponds to |0〉. Note that |βj〉 is
(in general) not normalized; 〈βj |βj〉 = ketinner[betaj,betaj] is the probability for measurement
outcome j, while the normalized state conditioned on this outcome will be ketnorm[betaj]. To
apply this scheme to measurements on something other than the first factor in a tensor product, it
is necessary to first carry out a permutation using permket, as explained in Sec. 3.4.

For a state described by a density operator ρ1 at t1 a different approach is required. Again
suppose that the first qubit is measured in the standard basis. The (unnormalized) conditional state
is obtained by first multiplying ρ1 by the appropriate projector corresponding to the measurement
outcome, and then taking a partial trace of this product over the first qubit using partrace[]. The
positive operator resulting from this process when normalized by dividing it by its trace (which is
what pop2dop[] does) is the desired conditional density operator. The same procedure works if
one is interested in a measurement on the second or any other qubit: one only has to construct
the appropriate projector P , and then take the appropriate partial trace of Pρ1. See Sec. 10 for
an example. And one can do the same thing for a pure state |ψ1〉 by first forming ρ1 = |ψ1〉〈ψ1|
using dyad and then multiplying by P , etc. The end result will, of course, be a (pure state) density
operator rather than a ket, as in the method described previously.

10 A Simple Example

The following example illustrates how the functions in this collection can be applied to a simple
quantum circuit composed of three qubits, Fig 1, in which an H gate (Hadamard) is applied to the
first qubit, an X gate (bit flip) to the second qubit, followed by a controlled-not from 1 (control)
to 3, a second controlled-not from 3 (control) to 2, and finally a measurement on qubit 2 in the
standard or computational basis.

1

2

3

H

X

Figure 1: Quantum circuit with three qubits.

Let us construct the unitary transformation corresponding to the part of the circuit preceding

16

the measurement. The Hilbert space is 8-dimensional and the dimension list is dl = {2,2,2}. The
unitary transformation has the form

unitar = cnot32 . cnot13 . xgt2 . had1, (10.1)

in a fairly obvious notation, with each of the three operators in the product on the right represented
by an 8 × 8 unitary matrix. Note that the order of the operators in (10.1) follows the usual
convention, with the right most operator applied first, and is thus written in the reverse order to
the circuit in Fig. 1, where we follow the usual convention of time increasing from left to right. The
X gate xgt2 could be placed to the right of had1 or to the left of cnot13 in (10.1), but does not
commute with cnot32.

The Hadamard and the X gate are constructed using either expandout[] or expandout2[]

had1 = expandout[hgate,{1},{2,2,2}] = expandout2[hgate,{1},3], (10.2)

xgt2 = expandout[xgate,{2},{2,2,2}] = expandout2[xgate,{2},3]. (10.3)

For the controlled-not gates we give only the expandout2 form:

cnot13 = expandout2[cnot,{1,3},3], (10.4)

cnot32 = expandout2[cnot,{3,2},3]. (10.5)

Note that cnot is already defined as a 4 × 4 matrix, and the order of integers in the list forming
the second argument of expandout[] is used to specify which qubit in the circuit corresponds to
the control and which to the data.

Once the matrix unitar, (10.1), is available, it can be used for various calculations. For
example, suppose that initially qubit 1 is in the state (|0〉 + 2|1〉)/

√
5, and 2 and 3 are in |0〉 and

|1〉, respectively, so the 8-dimensional ket for the total system is

kt0 = (bket[001,3] + 2*bket[101,3])/Sqrt[5], (10.6)

which could also be written as ketprod[{1,2},bket[01,2]]/Sqrt[5]. Then

kt1 = unitar . kt0 (10.7)

is the state just before the measurement. To calculate the probability p1 of a measurement outcome
corresponding to the second qubit being in the state |1〉, first construct the projector

proj = expandout2[zprj[1],{2},3] (10.8)

and then evaluate
p1 = ketinner[kt1 , proj. kt1]. (10.9)

Next consider a mixed initial state corresponding to |1〉 for qubit 1, (|0〉 + |1〉)/
√

2 for qubit 2,
and qubit 3 in the maximally-mixed state I/2. The initial density operator is

rho0 = tenprod[zprj[1], xprj[0], sig[0]/2], (10.10)

and unitary time development leads to

rho1 = unitar . rho0 . adjoint[unitar]. (10.11)

17

In place of (10.9) the probability that qubit 2 is in |1〉 is now given by

q1 = Tr[rho1 . proj] = matinner[rho1,proj]. (10.12)

The conditional state of qubits 1 and 3 given this measurement outcome is the 4 × 4 matrix

rhoc = pop2dop[partrace2[rho1. proj,2]], (10.13)

where pop2dop[] normalizes the outcome of the partial trace in order to produce a density operator.
The nonzero terms in its Pauli representation can be displayed using

prtpaulch[mat2paul[rhoc]]. (10.14)

11 Acknowledgments

The following individuals have made significant contributions to producing the functions and
other objects, writing the descriptions, and making the collection accessible on the Internet:
Christopher Brust, Michael Crouch, Samuel Pinansky, Adam Steele, Yuqing Sun. Financial sup-
port for this effort has come from Carnegie-Mellon University and from the Physics Division of the
National Science Foundation.

18

