1 Brief review of Part I (Jul 2, 2008)

2 Construction of finite fields
 • Polynomials over finite fields
 • Explicit construction of the finite field \mathbb{F}_q, with $q = p^n$.
 • Examples

3 Classical coding theory
 • Decoding methods
 • The Coset-Leader Algorithm
 • Examples
1 Finite fields
 - Definitions
Finite fields

- Definitions
- Examples
Finite fields
 - Definitions
 - Examples
 - The structure of finite fields
Finite fields
 - Definitions
 - Examples
 - The structure of finite fields

Classical codes over finite fields
 - Linear codes: basic properties
1. Finite fields
 - Definitions
 - Examples
 - The structure of finite fields

2. Classical codes over finite fields
 - Linear codes: basic properties
 - Encoding methods
1 Finite fields
 - Definitions
 - Examples
 - The structure of finite fields

2 Classical codes over finite fields
 - Linear codes: basic properties
 - Encoding methods
 - Hamming distance as a metric
Polynomials over finite fields

Let \mathbb{F} be a finite field. A *polynomial* over \mathbb{F} is an expression of the form

$$f(x) = \sum_{i=1}^{n} a_i x^i = a_0 + a_1 x + \cdots + a_n x^n$$

where $n = \deg(f)$ is a nonnegative integer called the *degree* of $f(x)$, $a_i \in \mathbb{F}$ for all $0 \leq i \leq n$ and x is a symbol not belonging to \mathbb{F}, called an *indeterminate* over \mathbb{F}.
Let \mathbb{F} be a finite field. A *polynomial* over \mathbb{F} is an expression of the form

$$f(x) = \sum_{i=1}^{n} a_i x^i = a_0 + a_1 x + \cdots + a_n x^n$$

where $n = \deg(f)$ is a nonnegative integer called the *degree* of $f(x)$, $a_i \in \mathbb{F}$ for all $0 \leq i \leq n$ and x is a symbol not belonging to \mathbb{F}, called an *indeterminate* over \mathbb{F}.

We can define the *sum* and *product* of two polynomials using the usual rules of addition and multiplication over \mathbb{F}.

Example: let $f(x) = x^2 + 2x + 1$ and $g(x) = 2x + 1$ be two polynomials over \mathbb{F}_3. Then $f(x) + g(x) = x^2 + x + 2$ and $f(x)g(x) = 2x^3 + 2x^2 + x + 1$.

The polynomials over a finite field \mathbb{F} form an *integral domain* and are denoted by $\mathbb{F}[x]$.

Vlad Gheorghiu (CMU)
Finite fields: An introduction. Part II.
August 7, 2008 4 / 18
Let \mathbb{F} be a finite field. A *polynomial* over \mathbb{F} is an expression of the form

$$f(x) = \sum_{i=1}^{n} a_i x^i = a_0 + a_1 x + \cdots + a_n x^n$$

where $n = \deg(f)$ is a nonnegative integer called the *degree* of $f(x)$, $a_i \in \mathbb{F}$ for all $0 \leq i \leq n$ and x is a symbol not belonging to \mathbb{F}, called an *indeterminate* over \mathbb{F}.

We can define the *sum* and *product* of two polynomials using the usual rules of addition and multiplication over \mathbb{F}.

Example: let $f(x) = x^2 + 2x + 1$ and $g(x) = 2x + 1$ be two polynomials over \mathbb{F}_3. Then

$$f(x) + g(x) = x^2 + x + 2$$

and

$$f(x)g(x) = 2x^3 + 2x^2 + x + 1.$$
Polynomials over finite fields

- Let \mathbb{F} be a finite field. A *polynomial* over \mathbb{F} is an expression of the form
 \[
 f(x) = \sum_{i=1}^{n} a_i x^i = a_0 + a_1 x + \cdots + a_n x^n
 \]
 where $n = \deg(f)$ is a nonnegative integer called the *degree* of $f(x)$, $a_i \in \mathbb{F}$ for all $0 \leq i \leq n$ and x is a symbol not belonging to \mathbb{F}, called an *indeterminate* over \mathbb{F}.

- We can define the *sum* and *product* of two polynomials using the usual rules of addition and multiplication over \mathbb{F}.

- Example: let $f(x) = x^2 + 2x + 1$ and $g(x) = 2x + 1$ be two polynomials over \mathbb{F}_3. Then
 \[
 f(x) + g(x) = x^2 + x + 2 \quad \text{and} \quad f(x)g(x) = 2x^3 + 2x^2 + x + 1.
 \]

- The polynomials over a finite field \mathbb{F} form an *integral domain* and are denoted by $\mathbb{F}[x]$.
Theorem 1: Division Algorithm

Let $g \neq 0$ be a polynomial in $\mathbb{F}[x]$. Then for any $f \in \mathbb{F}[x]$ there exist polynomials $q, r \in \mathbb{F}[x]$ such that

$$f = qg + r,$$

where $\text{deg}(r) < \text{deg}(g)$.

Example: Consider $f(x) = 2x^5 + x^4 + 4x + 3 \in \mathbb{F}_5[x]$, $g(x) = 3x^2 + 1 \in \mathbb{F}_5[x]$. Then $q(x) = 4x^3 + 2x^2 + 2x + 1$ and $r(x) = 2x + 2$, with $\text{deg}(r) < \text{deg}(g)$.

A polynomial with the leading term $a_n = 1$ is called a monic polynomial. A polynomial of degree zero is called a constant polynomial.
Theorem 1: Division Algorithm

Let $g \neq 0$ be a polynomial in $\mathbb{F}[x]$. Then for any $f \in \mathbb{F}[x]$ there exist polynomials $q, r \in \mathbb{F}[x]$ such that

$$f = qg + r,$$

where $\deg(r) < \deg(g)$.

Example: Consider $f(x) = 2x^5 + x^4 + 4x + 3 \in \mathbb{F}_5[x]$, $g(x) = 3x^2 + 1 \in \mathbb{F}_5[x]$. Then $q(x) = 4x^3 + 2x^2 + 2x + 1$ and $r(x) = 2x + 2$, with $\deg(r) < \deg(g)$.
Theorem 1: Division Algorithm

Let \(g \neq 0 \) be a polynomial in \(\mathbb{F}[x] \). Then for any \(f \in \mathbb{F}[x] \) there exist polynomials \(q, r \in \mathbb{F}[x] \) such that

\[
f = qg + r, \text{ where } \deg(r) < \deg(g).
\]

- Example: Consider \(f(x) = 2x^5 + x^4 + 4x + 3 \in \mathbb{F}_5[x], \)
 \(g(x) = 3x^2 + 1 \in \mathbb{F}_5[x] \). Then \(q(x) = 4x^3 + 2x^2 + 2x + 1 \) and
 \(r(x) = 2x + 2, \) with \(\deg(r) < \deg(g) \).

- A polynomial with the leading term \(a_n = 1 \) is called a monic polynomial. A polynomial of degree zero is called a constant polynomial.
Theorem 2: Greatest Common Divisor

Let \(f_1, f_2, \ldots, f_n \) be polynomials in \(\mathbb{F}[x] \) not all of which are 0. Then there exists a uniquely determined monic polynomial \(d \in \mathbb{F}[x] \) with the following properties: (i) \(d \) divides each \(f_j \), \(1 \leq j \leq n \); (ii) any polynomial \(c \in \mathbb{F}[x] \) dividing each \(f_j \), \(1 \leq j \leq n \), divides \(d \). Moreover, \(d \) can be expressed in the form

\[
d = b_1 f_1 + b_2 f_2 + \cdots + b_n f_n, \quad \text{with} \quad b_1, b_2, \ldots, b_n \in \mathbb{F}[x].
\]
Theorem 2: Greatest Common Divisor

Let \(f_1, f_2, \ldots, f_n \) be polynomials in \(\mathbb{F}[x] \) not all of which are 0. Then there exists a uniquely determined monic polynomial \(d \in \mathbb{F}[x] \) with the following properties: (i) \(d \) divides each \(f_j, 1 \leq j \leq n \); (ii) any polynomial \(c \in \mathbb{F}[x] \) dividing each \(f_j, 1 \leq j \leq n \), divides \(d \). Moreover, \(d \) can be expressed in the form

\[
d = b_1 f_1 + b_2 f_2 + \cdots + b_n f_n, \quad \text{with} \quad b_1, b_2, \ldots, b_n \in \mathbb{F}[x].
\]

A polynomial \(p \in \mathbb{F}[x] \) is said to be irreducible over \(\mathbb{F} \) (or prime in \(\mathbb{F}[x] \)) if \(p \) has positive degree and \(p = bc \) with \(b, c \in \mathbb{F}[x] \) implies that either \(b \) or \(c \) is a constant polynomial.
Theorem 2: Greatest Common Divisor

Let \(f_1, f_2, \ldots, f_n \) be polynomials in \(\mathbb{F}[x] \) not all of which are 0. Then there exists a uniquely determined monic polynomial \(d \in \mathbb{F}[x] \) with the following properties: (i) \(d \) divides each \(f_j \), \(1 \leq j \leq n \); (ii) any polynomial \(c \in \mathbb{F}[x] \) dividing each \(f_j \), \(1 \leq j \leq n \), divides \(d \). Moreover, \(d \) can be expressed in the form

\[
d = b_1 f_1 + b_2 f_2 + \cdots + b_n f_n, \quad \text{with } b_1, b_2, \ldots, b_n \in \mathbb{F}[x].
\]

- A polynomial \(p \in \mathbb{F}[x] \) is said to be \textit{irreducible over} \(\mathbb{F} \) (or \textit{prime in} \(\mathbb{F}[x] \)) if \(p \) has positive degree and \(p = bc \) with \(b, c \in \mathbb{F}[x] \) implies that either \(b \) or \(c \) is a constant polynomial.

- Example: \(x^2 - 2 \in \mathbb{Q}[x] \) is irreducible over the field \(\mathbb{Q} \) of rational numbers, but \(x^2 - 2 = (x + \sqrt{2})(x - \sqrt{2}) \) is reducible over the field \(\mathbb{R} \) of real numbers.
Theorem 3: Unique Factorization in $\mathbb{F}[x]$

Any polynomial $f \in \mathbb{F}[x]$ of positive degree can be written in the form

$$f = ap_1^{e_1} p_2^{e_2} \cdots p_k^{e_k},$$

where $a \in \mathbb{F}$, p_1, p_2, \ldots, p_k are distinct monic irreducible polynomials in $\mathbb{F}[x]$, and e_1, e_2, \ldots, e_k are positive integers. Moreover, this factorization is unique apart from the order in which the factors occur.
Theorem 3: Unique Factorization in $\mathbb{F}[x]$

Any polynomial $f \in \mathbb{F}[x]$ of positive degree can be written in the form

$$f = a p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k},$$

where $a \in \mathbb{F}$, p_1, p_2, \ldots, p_k are distinct monic irreducible polynomials in $\mathbb{F}[x]$, and e_1, e_2, \ldots, e_k are positive integers. Moreover, this factorization is unique apart from the order in which the factors occur.

The above equation is called the canonical factorization of the polynomial f in $\mathbb{F}[x]$.

Theorem 3: Unique Factorization in $\mathbb{F}[x]$

Any polynomial $f \in \mathbb{F}[x]$ of positive degree can be written in the form

$$f = a p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k},$$

where $a \in \mathbb{F}$, p_1, p_2, \ldots, p_k are distinct monic irreducible polynomials in $\mathbb{F}[x]$, and e_1, e_2, \ldots, e_k are positive integers. Moreover, this factorization is unique apart from the order in which the factors occur.

- The above equation is called the canonical factorization of the polynomial f in $\mathbb{F}[x]$.
- Central question about polynomials in $\mathbb{F}[x]$: decide if it is reducible or not. Not a trivial problem.
An element \(b \in \mathbb{F} \) is called a \textit{root} (or a \textit{zero}) of the polynomial \(f \in \mathbb{F}[x] \) if \(f(b) = 0 \).
An element $b \in \mathbb{F}$ is called a \textit{root} (or a \textit{zero}) of the polynomial $f \in \mathbb{F}[x]$ if $f(b) = 0$.

\begin{itemize}
 \item \textbf{Theorem 4}
\end{itemize}

An element $b \in \mathbb{F}$ is a root of the polynomial $f \in \mathbb{F}[x]$ if and only if $x - b$ divides $f(x)$.

\begin{itemize}
 \item \textbf{Theorem 5}
\end{itemize}

The polynomial $f \in \mathbb{F}[x]$ of degree 2 or 3 is irreducible in $\mathbb{F}[x]$ if and only if f has no root in \mathbb{F}. The converse holds for polynomials of degree 2 or 3, but not necessarily for polynomials of higher degree.
An element $b \in \mathbb{F}$ is called a root (or a zero) of the polynomial $f \in \mathbb{F}[x]$ if $f(b) = 0$.

Theorem 4

An element $b \in \mathbb{F}$ is a root of the polynomial $f \in \mathbb{F}[x]$ if and only if $x - b$ divides $f(x)$.

- If f is an irreducible polynomial in $\mathbb{F}[x]$ of degree ≥ 2, then Theorem 4 shows that f has no root in \mathbb{F}. The converse holds for polynomials of degree 2 or 3, but not necessarily for polynomials of higher degree.
• An element $b \in \mathbb{F}$ is called a root (or a zero) of the polynomial $f \in \mathbb{F}[x]$ if $f(b) = 0$.

Theorem 4

An element $b \in \mathbb{F}$ is a root of the polynomial $f \in \mathbb{F}[x]$ if and only if $x - b$ divides $f(x)$.

• If f is an irreducible polynomial in $\mathbb{F}[x]$ of degree ≥ 2, then Theorem 4 shows that f has no root in \mathbb{F}. The converse holds for polynomials of degree 2 or 3, but not necessarily for polynomials of higher degree.

Theorem 5

The polynomial $f \in \mathbb{F}[x]$ of degree 2 or 3 is irreducible in $\mathbb{F}[x]$ if and only if f has no root in \mathbb{F}.
Explicit construction of the finite field \mathbb{F}_q

Theorem 6

For $f \in \mathbb{F}[x]$, the residue class ring $\mathbb{F}[x]/f$ is a field if and only if f is irreducible over \mathbb{F}.
Explicit construction of the finite field \mathbb{F}_q

Theorem 6

For $f \in \mathbb{F}[x]$, the residue class ring $\mathbb{F}[x]/f$ is a field if and only if f is irreducible over \mathbb{F}.

In other words, to construct the finite field \mathbb{F}_q, with $q = p^n$,

1. Select a monic irreducible polynomial $f(x)$ of degree n in $\mathbb{F}_p[x]$ (it always exists).

2. The distinct residue classes comprising $\mathbb{F}_q[x]/f$ are described explicitly as $r + (f)$, where r runs through all polynomials in \mathbb{F}_p with $\deg(r) < \deg(f)$. Two residue classes $g + (f)$ and $h + (f)$ are identical precisely if $g \equiv h \mod f$, that is, $g - h$ is divisible by f. There are p^n polynomials in $\mathbb{F}_p[x]$, of degree smaller than n.

3. Identify each element of \mathbb{F}_q by an equivalence class. Construct the field table by computing sums and products of polynomials modulo f.

Vlad Gheorghiu (CMU) Finite fields: An introduction. Part II. August 7, 2008 9 / 18
Explicit construction of the finite field \mathbb{F}_q

Theorem 6

For $f \in \mathbb{F}[x]$, the residue class ring $\mathbb{F}[x]/f$ is a field if and only if f is irreducible over \mathbb{F}.

In other words, to construct the finite field \mathbb{F}_q, with $q = p^n$,

1. Select a monic irreducible polynomial $f(x)$ of degree n in $\mathbb{F}_p[x]$ (it always exists).
Explicit construction of the finite field \mathbb{F}_q

Theorem 6

For $f \in \mathbb{F}[x]$, the residue class ring $\mathbb{F}[x]/f$ is a field if and only if f is irreducible over \mathbb{F}.

In other words, to construct the finite field \mathbb{F}_q, with $q = p^n$,

1. Select a monic irreducible polynomial $f(x)$ of degree n in $\mathbb{F}_p[x]$ (it always exists).

2. The distinct residue classes comprising $\mathbb{F}_q[x]/f$ are described explicitly as $r + (f)$, where r runs through all polynomials in \mathbb{F}_p with $\deg(r) < \deg(f)$. Two residue classes $g + (f)$ and $h + (f)$ are identical precisely if $g \equiv h \mod f$, that is, $g - h$ is divisible by f. There are p^n polynomials in $\mathbb{F}_p[x]$, of degree smaller than n.
Explicit construction of the finite field \mathbb{F}_q

Theorem 6

For $f \in \mathbb{F}[x]$, the residue class ring $\mathbb{F}[x]/f$ is a field if and only if f is irreducible over \mathbb{F}.

In other words, to construct the finite field \mathbb{F}_q, with $q = p^n$,

1. Select a monic irreducible polynomial $f(x)$ of degree n in $\mathbb{F}_p[x]$ (it always exists).

2. The distinct residue classes comprising $\mathbb{F}_q[x]/f$ are described explicitly as $r + (f)$, where r runs through all polynomials in \mathbb{F}_p with $\deg(r) < \deg(f)$. Two residue classes $g + (f)$ and $h + (f)$ are identical precisely if $g \equiv h \mod f$, that is, $g - h$ is divisible by f. There are p^n polynomials in $\mathbb{F}_p[x]$, of degree smaller than n.

3. Identify each element of \mathbb{F}_q by an equivalence class. Construct the field table by computing sums and product of polynomials modulo f.
The finite field \mathbb{F}_4 (also called $GF(4)$).
Examples

The finite field \mathbb{F}_4 (also called $GF(4)$).

- Choose $f(x) = x^2 + x + 1 \in \mathbb{F}_2[x]$.

The residue classes of $\mathbb{F}_2[x]/f$ are $\{[0], [1], [x], [x+1]\}$.

The addition and multiplication tables are:

+	0	1	x	x+1
0 | 0 | 1 | x | x+1 |
1 | 1 | 0 | x+1 | x |
x | x | x+1 | 0 | 1 |
x+1 | x+1 | x | 1 | 0 |

and

\ast	0	1	x	x+1
0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | x | x+1 |
x | 0 | x | x+1 | 0 |
x+1 | 0 | x+1 | 0 | 1 |
Examples

The finite field \mathbb{F}_4 (also called $GF(4)$).

- Choose $f(x) = x^2 + x + 1 \in \mathbb{F}_2[x]$.
- The residue classes of $\mathbb{F}_2[x]/f$ are $\{[0], [1], [x], [x + 1]\}$.
Examples

The finite field \mathbb{F}_4 (also called $GF(4)$).

- Choose $f(x) = x^2 + x + 1 \in \mathbb{F}_2[x]$.
- The residue classes of $\mathbb{F}_2[x]/f$ are $\{[0], [1], [x], [x + 1]\}$. The addition and multiplication tables are:
The finite field \mathbb{F}_4 (also called $GF(4)$).

- Choose $f(x) = x^2 + x + 1 \in \mathbb{F}_2[x]$.
- The residue classes of $\mathbb{F}_2[x]/f$ are $\{[0], [1], [x], [x + 1]\}$. The addition and multiplication tables are:

<table>
<thead>
<tr>
<th></th>
<th>[0]</th>
<th>[1]</th>
<th>[x]</th>
<th>[x + 1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td>[0]</td>
<td>[1]</td>
<td>[x]</td>
<td>[x + 1]</td>
</tr>
<tr>
<td>[1]</td>
<td>[1]</td>
<td>[0]</td>
<td>[x + 1]</td>
<td>[x]</td>
</tr>
<tr>
<td>[x]</td>
<td>[x]</td>
<td>[x + 1]</td>
<td>[0]</td>
<td>[1]</td>
</tr>
<tr>
<td>[x + 1]</td>
<td>[x + 1]</td>
<td>[x]</td>
<td>[1]</td>
<td>[0]</td>
</tr>
</tbody>
</table>

and
Examples

The finite field \mathbb{F}_4 (also called $GF(4)$).

- Choose $f(x) = x^2 + x + 1 \in \mathbb{F}_2[x]$.
- The residue classes of $\mathbb{F}_2[x]/f$ are \{[0], [1], [x], [x + 1]\}. The addition and multiplication tables are:

<table>
<thead>
<tr>
<th>+</th>
<th>[0]</th>
<th>[1]</th>
<th>[x]</th>
<th>[x + 1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td>[0]</td>
<td>[1]</td>
<td>[x]</td>
<td>[x + 1]</td>
</tr>
<tr>
<td>[1]</td>
<td>[1]</td>
<td>[0]</td>
<td>[x + 1]</td>
<td>[x]</td>
</tr>
<tr>
<td>[x]</td>
<td>[x]</td>
<td>[x + 1]</td>
<td>[0]</td>
<td>[1]</td>
</tr>
<tr>
<td>[x + 1]</td>
<td>[x + 1]</td>
<td>[x]</td>
<td>[1]</td>
<td>[0]</td>
</tr>
</tbody>
</table>

and

<table>
<thead>
<tr>
<th>*</th>
<th>[0]</th>
<th>[1]</th>
<th>[x]</th>
<th>[x + 1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
</tr>
<tr>
<td>[1]</td>
<td>[0]</td>
<td>[1]</td>
<td>[x]</td>
<td>[x + 1]</td>
</tr>
<tr>
<td>[x]</td>
<td>[0]</td>
<td>[x]</td>
<td>[x + 1]</td>
<td>[1]</td>
</tr>
<tr>
<td>[x + 1]</td>
<td>[0]</td>
<td>[x + 1]</td>
<td>[1]</td>
<td>[x]</td>
</tr>
</tbody>
</table>
The finite field \mathbb{F}_9.

Choose $f(x) = x^2 + 1 \in \mathbb{F}_3[x]$. The residue classes of $\mathbb{F}_3[x]/f$ are

\{[0], [1], [2], [x], [x+1], [x+2], [2x], [2x+1], [2x+2]\}.

Construct the addition and multiplication table. Too much LaTeX code to be put in a single slide...
The finite field \mathbb{F}_9.

- Choose $f(x) = x^2 + 1 \in \mathbb{F}_3[x]$.
The finite field \mathbb{F}_9.

- Choose $f(x) = x^2 + 1 \in \mathbb{F}_3[x]$.
- The residue classes of $\mathbb{F}_3[x]/f$ are $
\{[0], [1], [2], [x], [x + 1], [x + 2], [2x], [2x + 1], [2x + 2]\}$.

The finite field \mathbb{F}_9.

- Choose $f(x) = x^2 + 1 \in \mathbb{F}_3[x]$.
- The residue classes of $\mathbb{F}_3[x]/f$ are

 $\{[0], [1], [2], [x], [x + 1], [x + 2], [2x], [2x + 1], [2x + 2]\}$.
- Construct the addition and multiplication table. Too much LaTeX code to be put in a single slide...
Theorem 7

A code C with minimum distance d_C can correct up to t errors if $d_C \geq 2t + 1$.

Proof.

A ball $B_t(x)$ of radius t and center $x \in F_n_q$ consists of all vectors $y \in F_n_q$ such that $d(x, y) \leq t$. The nearest neighbor decoding rule ensures that each received word with t or fewer errors must be in a ball of radius t and center the transmitted code word. To correct t errors, the balls with code words x as centers must not overlap. If $u \in B_t(x)$ and $u \in B_t(y)$, $x, y \in C$, $x \neq y$, then $d(x, y) \leq d(x, u) + d(u, y) \leq 2t$, a contradiction to $d_C \geq 2t + 1$.
Decoding methods

Theorem 7

A code C with minimum distance d_C can correct up to t errors if $d_C \geq 2t + 1$.

Proof. A ball $B_t(x)$ of radius t and center $x \in F^n_q$ consists of all vectors $y \in F^n_q$ such that $d(x, y) \leq t$. The nearest neighbor decoding rule ensures that each received word with t or fewer errors must be in a ball of radius t and center the transmitted code word. To correct t errors, the balls with code words x as centers must not overlap. If $u \in B_t(x)$ and $u \in B_t(y)$, $x, y \in C$, $x \neq y$, then $d(x, y) \leq d(x, u) + d(u, y) \leq 2t$, a contradiction to $d_C \geq 2t + 1$.

Vlad Gheorghiu (CMU)
Classical coding theory

Decoding methods

Theorem 7

A code C with minimum distance d_C can correct up to t errors if $d_C \geq 2t + 1$.

Proof.

A ball $B_t(x)$ of radius t and center $x \in \mathbb{F}_q^n$ consists of all vectors $y \in \mathbb{F}_q^n$ such that $d(x, y) \leq t$. The nearest neighbor decoding rule ensures that each received word with t or fewer errors must be in a ball of radius t and center the transmitted code word. To correct t errors, the balls with code words x as centers must not overlap. If $u \in B_t(x)$ and $u \in B_t(y)$, $x, y \in C$, $x \neq y$, then

$$d(x, y) \leq d(x, u) + d(u, y) \leq 2t,$$

a contradiction to $d_C \geq 2t + 1$.
The following lemma is useful for determining the minimum distance of a code

Lemma 8
A linear code C with parity-check matrix H has minimum distance $D_C \geq s + 1$ if and only if any s columns of H are linearly independent.

Proof.
Assume there are s linearly dependent columns of H, then $H^T c = 0$ and $\text{wt}(c) \leq s$ for suitable $c \in C, c \neq 0$, hence $d_C \leq s$. Similarly, if any s columns of H are linearly independent, then there is no $c \in C, c \neq 0$, of weight $\leq s$, hence $d_C \geq s + 1$.

Vlad Gheorghiu (CMU)
Finite fields: An introduction. Part II.
August 7, 2008 13 / 18
The following lemma is useful for determining the minimum distance of a code

Lemma 8

A linear code C with parity-check matrix H has minimum distance $D_C \geq s + 1$ if and only if any s columns of H are linearly independent.
The following lemma is useful for determining the minimum distance of a code

Lemma 8

A linear code C with parity-check matrix H has minimum distance $D_C \geq s + 1$ if and only if any s columns of H are linearly independent.

Proof.

Assume there are s linearly dependent columns of H, then $Hc^T = 0$ and $wt(c) \leq s$ for suitable $c \in C$, $c \neq 0$, hence $d_C \leq s$. Similarly, if any s columns of H are linearly independent, then there is no $c \in C$, $c \neq 0$, of weight $\leq s$, hence $d_C \geq s + 1$.

The Cose Leader Algorithm

- Let C be a (n, k) linear code over \mathbb{F}_q.
The Coset-Leader Algorithm

- Let C be a (n, k) linear code over \mathbb{F}_q.
- The vector space \mathbb{F}_q^n / C consists of all cosets

 $$a + C = \{a + c : c \in C\}$$

 with $a \in \mathbb{F}_q^n$.
The Coset-Leader Algorithm

- Let C be a (n, k) linear code over \mathbb{F}_q.
- The vector space \mathbb{F}_q^n / C consists of all cosets

$$a + C = \{a + c : c \in C\}$$

with $a \in \mathbb{F}_q^n$.
- Each coset contains q^k vectors and \mathbb{F}_q^n can be regarded as being partitioned into cosets of C, namely
Let C be a (n, k) linear code over \mathbb{F}_q.

The vector space \mathbb{F}_q^n / C consists of all cosets

$$a + C = \{a + c : c \in C\}$$

with $a \in \mathbb{F}_q^n$.

Each coset contains q^k vectors and \mathbb{F}_q^n can be regarded as being partitioned into cosets of C, namely

$$\mathbb{F}_q^n = (a^{(0)} + C) \cup (a^{(1)} + C) \cup \cdots (a^{(s)} + C),$$

where $a^{(0)} = 0$ and $s = q^{n-k} - 1$.
Let C be a (n, k) linear code over \mathbb{F}_q.

The vector space \mathbb{F}_q^n / C consists of all cosets

$$a + C = \{a + c : c \in C\}$$

with $a \in \mathbb{F}_q^n$.

Each coset contains q^k vectors and \mathbb{F}_q^n can be regarded as being partitioned into cosets of C, namely

$$\mathbb{F}_q^n = (a^{(0)} + C) \cup (a^{(1)} + C) \cup \cdots (a^{(s)} + C),$$

where $a^{(0)} = 0$ and $s = q^{n-k} - 1$.

A received vector y must be in one of the cosets, say $a^{(i)} + C$. If the codeword c was transmitted, then the error is given by $e = y - c = a^{(i)} + z \in a^{(i)} + C$ for suitable $z \in C$.

All possible error vectors e of a received vector y are the vectors in the coset of y.

Definition

Let $C \subseteq F^n_q$ be a linear (n, k) code and let F^n_q/C be the factor space. An element of minimum weight in a coset $a + C$ is called coset leader of $a + C$. If several vectors in $a + C$ have minimum weight, we choose one of them as coset leader.
• All possible error vectors e of a received vector y are the vectors in the coset of y.
• The most likely error vector is the vector e with minimum weight in the coset of y.

Definition
Let $C \subseteq F_{n,q}$ be a linear (n,k) code and let $F_{n,q}/C$ be the factor space. An element of minimum weight in a coset $a+C$ is called coset leader of $a+C$. If several vectors in $a+C$ have minimum weight, we choose one of them as coset leader.
All possible error vectors e of a received vector y are the vectors in the coset of y.

The most likely error vector is the vector e with minimum weight in the coset of y.

Thus we decode y as $x = y - e$.
• All possible error vectors e of a received vector y are the vectors in the coset of y.
• The most likely error vector is the vector e with minimum weight in the coset of y.
• Thus we decode y as $x = y - e$.

Definition

Let $C \subseteq \mathbb{F}_q^n$ be a linear (n, k) code and let \mathbb{F}_q^n/C be the factor space. An element of minimum weight in a coset $a + C$ is called *coset leader* of $a + C$. If several vectors in $a + C$ have minimum weight, we choose one of them as coset leader.
Definition

Let H be the parity-check matrix of a linear (n, k) code C. Then the vector $S(y) = H y^T$ of length $n - k$ is called the syndrome of y.
Definition

Let H be the parity-check matrix of a linear (n, k) code C. Then the vector $S(y) = H y^T$ of length $n - k$ is called the syndrome of y.

Theorem 9

For $y, z \in \mathbb{F}_q^n$ we have:

1) $S(y) = 0$ if and only if $y \in C$.
2) $S(y) = S(z)$ if and only if $y + C = z + C$.

Proof.

1) follows immediately from the definition of C in terms of H.

For 2) note that $S(y) = S(z)$ if and only if $H y^T = H z^T$ if and only if $H (y - z)^T = 0$ if and only if $y - z \in C$ if and only if $y + C = z + C$.

Vlad Gheorghiu (CMU)
Finite fields: An introduction. Part II.
August 7, 2008 16 / 18
Definition

Let H be the parity-check matrix of a linear (n, k) code C. Then the vector $S(y) = Hy^T$ of length $n - k$ is called the *syndrome* of y.

Theorem 9

For $y, z \in \mathbb{F}_q^n$ we have:

1. $S(y) = 0$ if and only if $y \in C$
Definition

Let H be the parity-check matrix of a linear (n, k) code C. Then the vector $S(y) = H y^T$ of length $n - k$ is called the *syndrome* of y.

Theorem 9

For $y, z \in \mathbb{F}_q^n$ we have:

1. $S(y) = 0$ if and only if $y \in C$
2. $S(y) = S(z)$ if and only if $y + C = z + C$
Definition

Let \(H \) be the parity-check matrix of a linear \((n, k)\) code \(C \). Then the vector \(S(y) = Hy^T \) of length \(n - k \) is called the *syndrome* of \(y \).

Theorem 9

For \(y, z \in \mathbb{F}_q^n \) we have:

1. \(S(y) = 0 \) if and only if \(y \in C \)
2. \(S(y) = S(z) \) if and only if \(y + C = z + C \)

Proof.

1) follows immediately from the definition of \(C \) in terms of \(H \).
Definition

Let H be the parity-check matrix of a linear (n, k) code C. Then the vector $S(y) = H y^T$ of length $n - k$ is called the syndrome of y.

Theorem 9

For $y, z \in \mathbb{F}_q^n$ we have:

1. $S(y) = 0$ if and only if $y \in C$
2. $S(y) = S(z)$ if and only if $y + C = z + C$

Proof.

1) follows immediately from the definition of C in terms of H.

For 2) note that $S(y) = S(z)$ if and only if $H y^T = H z^T$ if and only if $H(y - z)^T = 0$ if and only if $y - z \in C$ if and only if $y + C = z + C$.
If \(e = y - c \), \(c \in C \), \(y \in \mathbb{F}_q^n \), then

\[S(y) = S(c + e) = S(c) + S(e) = S(e) \]

and \(y \) and \(e \) are in the same coset. The coset leader of that coset also has the same syndrome. We have the following decoding algorithm.

The Coset-Leader Algorithm

1. Let \(C \subseteq \mathbb{F}_q^n \) be a linear \((n, k)\) code and let \(y \) be the received vector.
2. To correct errors in \(y \), calculate \(S(y) \) and find the coset leader, say \(e \), with syndrome equal to \(S(y) \).
3. Then decode \(y \) as \(x = y - e \). Here \(x \) is the code word with minimum distance to \(y \).
If $e = y - c$, $c \in C$, $y \in \mathbb{F}_q^n$, then

$$S(y) = S(c + e) = S(c) + S(e) = S(e)$$
If \(e = y - c, \; c \in C, \; y \in \mathbb{F}_q^n \), then

\[
S(y) = S(c + e) = S(c) + S(e) = S(e)
\]

and \(y \) and \(e \) are in the same coset. The coset leader of that coset also has the same syndrome. We have the following decoding algorithm.
If $e = y - c$, $c \in C$, $y \in \mathbb{F}_q^n$, then

$$S(y) = S(c + e) = S(c) + S(e) = S(e)$$

and y and e are in the same coset. The coset leader of that coset also has the same syndrome. We have the following decoding algorithm.

The Coset-Leader Algorithm

1. Let $C \subseteq \mathbb{F}_q^n$ be a linear (n, k) code and let y be the received vector.
If $\mathbf{e} = \mathbf{y} - \mathbf{c}$, $\mathbf{c} \in C$, $\mathbf{y} \in \mathbb{F}_q^n$, then

$$S(\mathbf{y}) = S(\mathbf{c} + \mathbf{e}) = S(\mathbf{c}) + S(\mathbf{e}) = S(\mathbf{e})$$

and \mathbf{y} and \mathbf{e} are in the same coset. The coset leader of that coset also has the same syndrome. We have the following decoding algorithm.

The Coset-Leader Algorithm

1. Let $C \subseteq \mathbb{F}_q^n$ be a linear (n, k) code and let \mathbf{y} be the received vector.
2. To correct errors in \mathbf{y}, calculate $S(\mathbf{y})$ and find the coset leader, say \mathbf{e}, with syndrome equal to $S(\mathbf{y})$. Then decode \mathbf{y} as $\mathbf{x} = \mathbf{y} - \mathbf{e}$. Here \mathbf{x} is the code word with minimum distance to \mathbf{y}.
If \(e = y - c, \ c \in C, \ y \in \mathbb{F}_q^n \), then

\[
S(y) = S(c + e) = S(c) + S(e) = S(e)
\]

and \(y \) and \(e \) are in the same coset. The coset leader of that coset also has the same syndrome. We have the following decoding algorithm.

The Coset-Leader Algorithm

1. Let \(C \subseteq \mathbb{F}_q^n \) be a linear \((n, k)\) code and let \(y \) be the received vector.
2. To correct errors in \(y \), calculate \(S(y) \) and find the coset leader, say \(e \), with syndrome equal to \(S(y) \).
3. Then decode \(y \) as \(x = y - e \). Here \(x \) is the code word with minimum distance to \(y \).
Coset-Leader example

Discuss it on the board.