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Construction of finite fields Polynomials over finite fields

Polynomials over finite fields

Let F be a finite field. A polynomial over F is an expression of the
form

f (x) =
n∑

i=1

aix
i = a0 + a1x + · · ·+ anx

n

where n = deg(f ) is a nonnegative integer called the degree of f (x),
ai ∈ F for all 0 6 i 6 n and x is a symbol not belonging to F, called
an indeterminate over F.

We can define the sum and product of two polynomials using the
usual rules of addition and multiplication over F.
Example: let f (x) = x2 + 2x + 1 and g(x) = 2x + 1 be two
polynomials over F3. Then

f (x) + g(x) = x2 + x + 2 and f (x)g(x) = 2x3 + 2x2 + x + 1.

The polynomials over a finite field F form an integral domain and are
denoted by F[x ].
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Construction of finite fields Polynomials over finite fields

Theorem 1: Division Algorithm

Let g 6= 0 be a polynomial in F[x ]. Then for any f ∈ F[x ] there exist
polynomials q, r ∈ F[x ] such that

f = qg + r , where deg(r) < deg(g).

Example: Consider f (x) = 2x5 + x4 + 4x + 3 ∈ F5[x ],
g(x) = 3x2 + 1 ∈ F5[x ]. Then q(x) = 4x3 + 2x2 + 2x + 1 and
r(x) = 2x + 2, with deg(r) <deg(g).

A polynomial with the leading term an = 1 is called a monic
polynomial. A polynomial of degree zero is called a constant
polynomial.
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Construction of finite fields Polynomials over finite fields

Theorem 2: Greatest Common Divisor

Let f1, f2, . . . , fn be polynomials in F[x ] not all of which are 0. Then there
exists a uniquely determined monic polynomial d ∈ F[x ] with the following
properties: (i) d divides each fj , 1 6 j 6 n; (ii) any polynomial c ∈ F[x ]
dividing each fj , 1 6 j 6 n, divides d . Moreover, d can be expressed in the
form

d = b1f1 + b2f2 + · · ·+ bnfn, with b1, b2, . . . , bn ∈ F[x ].

A polynomial p ∈ F[x ] is said to be irreducible over F (or prime in
F[x ]) if p has positive degree and p = bc with b, c ∈ F[x ] implies
that either b or c is a constant polynomial.

Example: x2 − 2 ∈ Q[x ] is irreducible over the field Q of rational
numbers, but x2 − 2 = (x +

√
2)(x −

√
2) is reducible over the field R

of real numbers.
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Construction of finite fields Polynomials over finite fields

Theorem 3: Unique Factorization in F[x ]

Any polynomial f ∈ F[x ] of positive degree can be written in the form

f = ape1
1 p22

2 · · · p
ek
k ,

where a ∈ F, p1, p2, . . . , pk are distinct monic irreducible polynomials in
F[x ], and e1, e2, . . . , ek are positive integers. Moreover, this factorization is
unique apart from the order in which the factors occur.

The above equation is called the canonical factorization of the
polynomial f in F[x ].

Central question about polynomials in F[x ]: decide if it is reducible or
not. Not a trivial problem.
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Construction of finite fields Polynomials over finite fields

An element b ∈ F is called a root (or a zero) of the polynomial
f ∈ F[x ] if f (b) = 0.

Theorem 4

An element b ∈ F is a root of the polynomial f ∈ F[x ] if and only if x − b
divides f (x).

If f is an irreducible polynomial in F[x ] of degree > 2, then Theorem 4
shows that f has no root in F. The converse holds for polynomials of
degree 2 or 3, but not necessarily for polynomials of higher degree.

Theorem 5

The polynomial f ∈ F[x ] of degree 2 or 3 is irreducible in F[x ] if and only
if f has no root in F.
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Construction of finite fields Explicit construction of the finite field Fq , with q = pn .

Explicit construction of the finite field Fq

Theorem 6

For f ∈ F[x ], the residue class ring F[x ]/f is a field if and only if f is
irreducible over F.

In other words, to construct the finite field Fq, with q = pn,

1 Select a monic irreducible polynomial f (x) of degree n in Fp[x ] (it
always exists).

2 The distinct residue classes comprising Fq[x ]/f are described
explicitly as r + (f ), where r runs through all polynomials in Fp with
deg(r) <deg(f ). Two residue classes g + (f ) and h + (f ) are identical
precisely if g ≡ h mod f , that is, g − h is divisible by f . There are
pn polynomials in Fp[x ], of degree smaller than n.

3 Identify each element of Fq by an equivalence class. Construct the
field table by computing sums and product of polynomials modulo f .
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Construction of finite fields Examples

Examples

The finite field F4 (also called GF (4)).

Choose f (x) = x2 + x + 1 ∈ F2[x ].

The residue classes of F2[x ]/f are {[0], [1], [x ], [x + 1]}.The addition
and multiplication tables are:

+ [0] [1] [x ] [x + 1]

[0] [0] [1] [x ] [x + 1]
[1] [1] [0] [x + 1] [x ]
[x ] [x ] [x + 1] [0] [1]

[x + 1] [x + 1] [x ] [1] [0]
and
∗ [0] [1] [x ] [x + 1]

[0] [0] [0] [0] [0]
[1] [0] [1] [x ] [x + 1]
[x ] [0] [x ] [x + 1] [1]

[x + 1] [0] [x + 1] [1] [x ]
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+ [0] [1] [x ] [x + 1]

[0] [0] [1] [x ] [x + 1]
[1] [1] [0] [x + 1] [x ]
[x ] [x ] [x + 1] [0] [1]

[x + 1] [x + 1] [x ] [1] [0]
and
∗ [0] [1] [x ] [x + 1]

[0] [0] [0] [0] [0]
[1] [0] [1] [x ] [x + 1]
[x ] [0] [x ] [x + 1] [1]

[x + 1] [0] [x + 1] [1] [x ]
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Construction of finite fields Examples

The finite field F9.

Choose f (x) = x2 + 1 ∈ F3[x ].

The residue classes of F3[x ]/f are
{[0], [1], [2], [x ], [x + 1], [x + 2], [2x ], [2x + 1], [2x + 2]}.
Construct the addition and multiplication table. Too much LATEXcode
to be put in a single slide...
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Classical coding theory Decoding methods

Decoding methods

Theorem 7

A code C with minimum distance dC can correct up to t errors if
dC > 2t + 1.

Proof.

A ball Bt(x) of radius t and center x ∈ Fn
q consists of all vectors y ∈ Fn

q

such that d(x, y) 6 t. The nearest neighbor decoding rule ensures that
each received word with t or fewer errors must be in a ball of radius t and
center the transmitted code word. To correct t errors, the balls with code
words x as centers must not overlap. If u ∈ Bt(x) and u ∈ Bt(y),
x, y ∈ C , x 6= y, then

d(x, y) 6 d(x, u) + d(u, y) 6 2t,

a contradiction to dC > 2t + 1.
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Classical coding theory Decoding methods

The following lemma is useful for determining the minimum distance of a
code

Lemma 8

A linear code C with parity-check matrix H has minimum distance
DC > s + 1 if and only if any s columns of H are linearly independent.

Proof.

Assume there are s linearly dependent columns of H, then HcT = 0 and
wt(c) 6 s for suitable c ∈ C , c 6= 0, hence dC 6 s. Similarly, if any s
columns of H are linearly independent, then there is no c ∈ C , c 6= 0, of
weight 6 s, hence dC > s + 1.
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Classical coding theory The Coset-Leader Algorithm

The Coset-Leader Algorithm

Let C be a (n, k) linear code over Fq.

The vector space Fn
q/C consists of all cosets

a + C = {a + c : c ∈ C}

with a ∈ Fn
q.

Each coset contains qk vectors and Fn
q can be regarded as being

partitioned into cosets of C , namely

Fn
q = (a(0) + C ) ∪ (a(1) + C ) ∪ · · · (a(s) + C ),

where a(0) = 0 and s = qn−k − 1.

A received vector y must be in one of the cosets, say a(i) + C . If the
codeword c was transmitted, then the error is given by
e = y − c = a(i) + z ∈ a(i) + C for suitable z ∈ C .
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Classical coding theory The Coset-Leader Algorithm

All possible error vectors e of a received vector y are the vectors in
the coset of y.

The most likely error vector is the vector e with minimum weight in
the coset of y.

Thus we decode y as x = y − e.

Definition

Let C ⊆ Fn
q be a linear (n, k) code and let Fn

q/C be the factor space. An
element of minimum weight in a coset a + C is called coset leader of
a + C . If several vectors in a + C have minimum weight, we choose one of
them as coset leader.
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Classical coding theory The Coset-Leader Algorithm

Definition

Let H be the parity-check matrix of a linear (n, k) code C . Then the
vector S(y) = HyT of length n − k is called the syndrome of y.

Theorem 9

For y, z ∈ Fn
q we have:

1 S(y) = 0 if and only if y ∈ C

2 S(y) = S(z) if and only if y + C = z + C

Proof.

1) follows immediately from the definition of C in terms of H.

For 2) note that S(y) = S(z) if and only if HyT = HzT if and only if
H(y − z)T = 0 if and only if y − z ∈ C if and only if y + C = z + C .
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Classical coding theory The Coset-Leader Algorithm

If e = y − c, c ∈ C , y ∈ Fn
q, then

S(y) = S(c + e) = S(c) + S(e) = S(e)

and y and e are in the same coset. The coset leader of that coset also
has the same syndrome. We have the following decoding algorithm.

The Coset-Leader Algorithm

1 Let C ⊆ Fn
q be a linear (n, k) code and let y be the received vector.

2 To correct errors in y, calculate S(y) and find the coset leader, say e, with
syndrome equal to S(y.

3 Then decode y as x = y − e. Here x is the code word with minimum
distance to y.
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Classical coding theory Examples

Coset-Leader example

Discuss it on the board.
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