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Brief review of Part | (Jul 2, 2008)
Brief review of Part |

O Finite fields
e Definitions
o Examples
e The structure of finite fields
@ C(lassical codes over finite fields
e Linear codes: basic properties
e Encoding methods
e Hamming distance as a metric
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Construction of finite fields Polynomials over finite fields

Polynomials over finite fields

@ Let IF be a finite field. A polynomial over I is an expression of the
form

n
f(x) = Za;xi =ag+arx+ -+ apx"
i=1
where n = deg(f) is a nonnegative integer called the degree of f(x),
aj € Fforall 0 < i< nand x is a symbol not belonging to I, called
an indeterminate over F.
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o Let I be a finite field. A polynomial over F is an expression of the
form

n
f(x) = Za;xi =ag+arx+ -+ apx"
i=1
where n = deg(f) is a nonnegative integer called the degree of f(x),
aj € Fforall 0 < i< nand x is a symbol not belonging to I, called
an indeterminate over F.
@ We can define the sum and product of two polynomials using the
usual rules of addition and multiplication over F.
e Example: let f(x) = x?> 4+ 2x + 1 and g(x) = 2x + 1 be two
polynomials over F3. Then

f(x) +g(x) = x>+ x + 2 and f(x)g(x) = 2x° + 2x® + x + 1.
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Polynomials over finite fields

o Let I be a finite field. A polynomial over F is an expression of the
form

n
f(x) = Za;xi =ag+arx+ -+ apx"
i=1
where n = deg(f) is a nonnegative integer called the degree of f(x),
aj € Fforall 0 < i< nand x is a symbol not belonging to I, called
an indeterminate over F.
@ We can define the sum and product of two polynomials using the
usual rules of addition and multiplication over F.
e Example: let f(x) = x?> 4+ 2x + 1 and g(x) = 2x + 1 be two
polynomials over F3. Then

f(x) +g(x) = x>+ x + 2 and f(x)g(x) = 2x° + 2x® + x + 1.

@ The polynomials over a finite field F form an integral domain and are
denoted by F[x].
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Construction of finite fields Polynomials over finite fields

Theorem 1: Division Algorithm

Let g # 0 be a polynomial in F[x]. Then for any f € F[x] there exist
polynomials g, r € F[x] such that

f = qg + r, where deg(r) < deg(g).
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polynomials g, r € F[x] such that

f = qg + r, where deg(r) < deg(g).

e Example: Consider f(x) = 2x> + x* + 4x + 3 € Fs[x],
g(x) =3x%2 +1 € Fs[x]. Then g(x) = 4x> 4+ 2x% +2x + 1 and
r(x) = 2x + 2, with deg(r) <deg(g).
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Construction of finite fields Polynomials over finite fields

Theorem 1: Division Algorithm

Let g # 0 be a polynomial in F[x]. Then for any f € F[x] there exist
polynomials g, r € F[x] such that

f = qg + r, where deg(r) < deg(g).

e Example: Consider f(x) = 2x> + x* + 4x + 3 € Fs[x],
g(x) =3x%2 +1 € Fs[x]. Then g(x) = 4x> 4+ 2x% +2x + 1 and
r(x) = 2x + 2, with deg(r) <deg(g).

@ A polynomial with the leading term a, = 1 is called a monic
polynomial. A polynomial of degree zero is called a constant
polynomial.
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Construction of finite fields Polynomials over finite fields

Theorem 2: Greatest Common Divisor

Let f1, fp, ..., f, be polynomials in F[x]| not all of which are 0. Then there
exists a uniquely determined monic polynomial d € F[x] with the following
properties: (i) d divides each f;, 1 <j < n; (ii) any polynomial ¢ € F[x]
dividing each f;, 1 < j < n, divides d. Moreover, d can be expressed in the
form

d = bify + bofo + - - - + bpfy, with by, by, ..., by € F[x].
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dividing each f;, 1 < j < n, divides d. Moreover, d can be expressed in the
form

d = bify + bofo + - - - + bpfy, with by, by, ..., by € F[x].

e A polynomial p € F[x] is said to be irreducible over F (or prime in
F[x]) if p has positive degree and p = bc with b, ¢ € F[x] implies
that either b or c is a constant polynomial.
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Theorem 2: Greatest Common Divisor

Let f1, fp, ..., f, be polynomials in F[x]| not all of which are 0. Then there
exists a uniquely determined monic polynomial d € F[x] with the following
properties: (i) d divides each f;, 1 <j < n; (ii) any polynomial ¢ € F[x]
dividing each f;, 1 < j < n, divides d. Moreover, d can be expressed in the
form

d = bify + bofo + - - - + bpfy, with by, by, ..., by € F[x].

e A polynomial p € F[x] is said to be irreducible over F (or prime in
F[x]) if p has positive degree and p = bc with b, ¢ € F[x] implies
that either b or c is a constant polynomial.

e Example: x?> — 2 € Q[x] is irreducible over the field Q of rational
numbers, but x> — 2 = (x + v/2)(x — v/2) is reducible over the field R
of real numbers.
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Construction of finite fields Polynomials over finite fields

Theorem 3: Unique Factorization in F[x]

Any polynomial f € F[x] of positive degree can be written in the form

2
f=api'py -
where a € F, p1, po, . .., pk are distinct monic irreducible polynomials in
F[x], and e1, e, ..., ek are positive integers. Moreover, this factorization is

unique apart from the order in which the factors occur.
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unique apart from the order in which the factors occur.

@ The above equation is called the canonical factorization of the
polynomial f in F[x].
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Construction of finite fields Polynomials over finite fields

Theorem 3: Unique Factorization in F[x]

Any polynomial f € F[x] of positive degree can be written in the form

2
f=apr'py® - Py,
where a € F, p1, po, . .., pk are distinct monic irreducible polynomials in
F[x], and e1, e, ..., ek are positive integers. Moreover, this factorization is

unique apart from the order in which the factors occur.

@ The above equation is called the canonical factorization of the
polynomial f in F[x].

e Central question about polynomials in F[x]: decide if it is reducible or
not. Not a trivial problem.

Vlad Gheorghiu (CMU) Finite fields: An introduction. Part Il. August 7, 2008 7/18



Construction of finite fields Polynomials over finite fields

@ An element b € F is called a root (or a zero) of the polynomial
f € F[x] if f(b) =0.
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@ An element b € F is called a root (or a zero) of the polynomial
f € F[x] if f(b) =0.

Theorem 4

An element b € F is a root of the polynomial f € F[x] if and only if x — b
divides f(x).
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f € F[x] if f(b) =0.

Theorem 4

An element b € F is a root of the polynomial f € F[x] if and only if x — b
divides f(x).

e If f is an irreducible polynomial in F[x] of degree > 2, then Theorem 4
shows that f has no root in IF. The converse holds for polynomials of
degree 2 or 3, but not necessarily for polynomials of higher degree.
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Construction of finite fields Polynomials over finite fields

@ An element b € F is called a root (or a zero) of the polynomial
f € F[x] if f(b) =0.

Theorem 4

An element b € F is a root of the polynomial f € F[x] if and only if x — b
divides f(x).

e If f is an irreducible polynomial in F[x] of degree > 2, then Theorem 4
shows that f has no root in IF. The converse holds for polynomials of
degree 2 or 3, but not necessarily for polynomials of higher degree.

The polynomial f € F[x] of degree 2 or 3 is irreducible in F[x] if and only
if f has no root in F.

Vlad Gheorghiu (CMU) Finite fields: An introduction. Part Il. August 7, 2008 8 /18



Construction of finite fields Explicit construction of the finite field F,, with g = p".

Explicit construction of the finite field I

Theorem 6

For f € IF[x], the residue class ring F[x]/f is a field if and only if f is
irreducible over IF.
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Construction of finite fields Explicit construction of the finite field F,, with g = p".

Explicit construction of the finite field I

In other words, to construct the finite field F,, with g = p”,

@ Select a monic irreducible polynomial f(x) of degree nin F,[x] (it
always exists).
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Construction of finite fields Explicit construction of the finite field F,, with g = p".

Explicit construction of the finite field I

Theorem 6

For f € IF[x], the residue class ring F[x]/f is a field if and only if f is
irreducible over IF.

In other words, to construct the finite field F,, with g = p”,

@ Select a monic irreducible polynomial f(x) of degree nin F,[x] (it
always exists).

@ The distinct residue classes comprising Fq[x]/f are described
explicitly as r + (f), where r runs through all polynomials in F,, with
deg(r) <deg(f). Two residue classes g + (f) and h+ (f) are identical
precisely if g = h mod f, that is, g — h is divisible by f. There are
p"” polynomials in F,[x], of degree smaller than n.
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Construction of finite fields Explicit construction of the finite field F,, with g = p".

Explicit construction of the finite field I

Theorem 6

For f € IF[x], the residue class ring F[x]/f is a field if and only if f is
irreducible over IF.

In other words, to construct the finite field F,, with g = p”,

@ Select a monic irreducible polynomial f(x) of degree nin F,[x] (it
always exists).

@ The distinct residue classes comprising Fq[x]/f are described
explicitly as r + (f), where r runs through all polynomials in F,, with
deg(r) <deg(f). Two residue classes g + (f) and h+ (f) are identical
precisely if g = h mod f, that is, g — h is divisible by f. There are
p"” polynomials in F,[x], of degree smaller than n.

© Identify each element of Fy by an equivalence class. Construct the
field table by computing sums and product of polynomials modulo f.
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Construction of finite fields Examples

Examples

The finite field F4 (also called GF(4)).
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Examples
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e Choose f(x) = x? + x + 1 € Fa[x].
@ The residue classes of Fa[x]/f are {[0], [1], [x], [x + 1]}.
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Construction of finite fields Examples

Examples

The finite field F4 (also called GF(4)).
e Choose f(x) = x? + x + 1 € Fa[x].

@ The residue classes of Fa[x]/f are {[0], [1], [x], [x + 1]}.The addition
and multiplication tables are:

+ [0] [1] [x]  [x+1]
[0] [0] [1] X x4+ 1]
[1] [1] 0]  x+1 X
[x] I x+1  [0] [1]
x+1] [ Ix+1] ] [1] [0]

and
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Construction of finite fields Examples

Examples

The finite field F4 (also called GF(4)).
e Choose f(x) = x? + x + 1 € Fa[x].

@ The residue classes of Fa[x]/f are {[0], [1], [x], [x + 1]}.The addition
and multiplication tables are:

N I I I
o | O 1 K x+1
oo om0 kel [
M| W k1 o [
pra) [pern) b ) [
)V I I R
o |0 O [ [
oo [ K k]
M0 W k1 [
x+1 0] x+1 [ [
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Construction of finite fields Examples

The finite field Fg.
e Choose f(x) = x?>+ 1 € F3[x].

@ The residue classes of F3[x]/f are
{[o], [1], [2]. [x], [x + 1], [x + 2], [2x], [2x + 1], [2x + 2]}.
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Construction of finite fields Examples

The finite field Fg.
e Choose f(x) = x?>+ 1 € F3[x].
@ The residue classes of F3[x]/f are
{[0], [1], [2], [x], [x + 1], [x + 2], [2x], [2x + 1], [2x + 2]}.
@ Construct the addition and multiplication table. Too much ATEXcode
to be put in a single slide...
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Decoding methods

A code C with minimum distance d¢ can correct up to t errors if
dc > 2t + 1.
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Classical coding theory Decoding methods

Decoding methods

A code C with minimum distance d¢ can correct up to t errors if
dc > 2t + 1.

Proof.

A ball By(x) of radius t and center x € g consists of all vectors y € Fg
such that d(x,y) < t. The nearest neighbor decoding rule ensures that
each received word with t or fewer errors must be in a ball of radius t and
center the transmitted code word. To correct t errors, the balls with code
words x as centers must not overlap. If u € Bi(x) and u € By(y),

x,y € C, x #y, then

d(x,y) < d(x,u) +d(u,y) < 2t,

a contradiction to d¢ > 2t + 1. O
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Classical coding theory Decoding methods

The following lemma is useful for determining the minimum distance of a
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Vlad Gheorghiu (CMU) Finite fields: An introduction. Part II. August 7, 2008 13 /18



Classical coding theory Decoding methods

The following lemma is useful for determining the minimum distance of a
code

A linear code C with parity-check matrix H has minimum distance
D¢ > s+ 1 if and only if any s columns of H are linearly independent.
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Classical coding theory Decoding methods

The following lemma is useful for determining the minimum distance of a
code

Lemma 8

A linear code C with parity-check matrix H has minimum distance
D¢ > s+ 1 if and only if any s columns of H are linearly independent.

| A

Proof.

Assume there are s linearly dependent columns of H, then Hc” = 0 and
wt(c) < s for suitable ¢ € C,c # 0, hence d¢c < s. Similarly, if any s
columns of H are linearly independent, then there is no c € C, c # 0, of
weight < s, hence d¢ > s + 1. O

V.
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Classical coding theory The Coset-Leader Algorithm

The Coset-Leader Algorithm

o Let C be a (n, k) linear code over F.
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The Coset-Leader Algorithm

o Let C be a (n, k) linear code over F.

@ The vector space Fg/C consists of all cosets
a+C={a+c:ce (}

with a € IFZ.

Vlad Gheorghiu (CMU) Finite fields: An introduction. Part II. August 7, 2008 14 /18



Classical coding theory The Coset-Leader Algorithm

The Coset-Leader Algorithm

o Let C be a (n, k) linear code over F.

@ The vector space Fg/C consists of all cosets
a+C={a+c:ce (}

with a € IFZ.

e Each coset contains g* vectors and g can be regarded as being
partitioned into cosets of C, namely
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The Coset-Leader Algorithm

o Let C be a (n, k) linear code over F.

@ The vector space Fg/C consists of all cosets
a+C={a+c:ce (}

with a € Fg.
e Each coset contains g* vectors and g can be regarded as being
partitioned into cosets of C, namely

Fr = (a® + C)u @ + C)u--- (@ + C),

where a(® =0 and s = ¢g" kK — 1.
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Classical coding theory The Coset-Leader Algorithm

The Coset-Leader Algorithm

o Let C be a (n, k) linear code over F.

@ The vector space Fg/C consists of all cosets
a+C={a+c:ce (}

with a € IFZ.

e Each coset contains g* vectors and g can be regarded as being
partitioned into cosets of C, namely

Fr = (a® + C)u @ + C)u--- (@ + C),

where a(® =0 and s = ¢g" kK — 1.

o A received vector y must be in one of the cosets, say al) 4+ C. If the
codeword c was transmitted, then the error is given by
e=y—c=al) +zeal) C for suitable z € C.

Vlad Gheorghiu (CMU) Finite fields: An introduction. Part II. August 7, 2008 14 /18



Classical coding theory The Coset-Leader Algorithm

@ All possible error vectors e of a received vector y are the vectors in
the coset of y.
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Classical coding theory The Coset-Leader Algorithm

@ All possible error vectors e of a received vector y are the vectors in
the coset of y.

@ The most likely error vector is the vector e with minimum weight in
the coset of y.
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Classical coding theory The Coset-Leader Algorithm

@ All possible error vectors e of a received vector y are the vectors in
the coset of y.

@ The most likely error vector is the vector e with minimum weight in
the coset of y.

@ Thus we decodey asx=y —e.
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Classical coding theory The Coset-Leader Algorithm

@ All possible error vectors e of a received vector y are the vectors in
the coset of y.

@ The most likely error vector is the vector e with minimum weight in
the coset of y.

@ Thus we decodey asx=y —e.

Definition

Let C C [Fy be a linear (n, k) code and let F7/C be the factor space. An
element of minimum weight in a coset a + C is called coset leader of
a+ C. If several vectors in a+ C have minimum weight, we choose one of

them as coset leader.

Vlad Gheorghiu (CMU) Finite fields: An introduction. Part Il. August 7, 2008 15 /18



Classical coding theory The Coset-Leader Algorithm

Definition

Let H be the parity-check matrix of a linear (n, k) code C. Then the
vector S(y) = Hy' of length n — k is called the syndrome of y.
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Classical coding theory The Coset-Leader Algorithm

Definition

Let H be the parity-check matrix of a linear (n, k) code C. Then the
vector S(y) = Hy' of length n — k is called the syndrome of y.

Theorem 9

Fory,z € Fg we have:
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Classical coding theory The Coset-Leader Algorithm

Definition

Let H be the parity-check matrix of a linear (n, k) code C. Then the
vector S(y) = Hy" of length n — k is called the syndrome of y.

Theorem 9
Fory,z € Fg we have:
QO S(y)=0ifandonlyify e C
Q@ S(y)=S(z)ifandonlyify+ C=z+C

| A

Proof.
o 1) follows immediately from the definition of C in terms of H.

.
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Classical coding theory The Coset-Leader Algorithm

Definition

Let H be the parity-check matrix of a linear (n, k) code C. Then the
vector S(y) = Hy" of length n — k is called the syndrome of y.

Theorem 9

Fory,z € Fg we have:
QO S(y)=0ifandonlyify e C
Q@ S(y)=S(z)ifandonlyify+ C=z+C

Proof.
o 1) follows immediately from the definition of C in terms of H.

@ For 2) note that S(y) = S(z) if and only if Hy” = Hz if and only if
H(y —z)" =0ifandonlyify —z€ Cifand onlyify + C =z + C.

Ol

| A

v
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Classical coding theory The Coset-Leader Algorithm

olfe=y—c ce( yelg, then
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Classical coding theory The Coset-Leader Algorithm

olfe=y—c ce( yelg, then

S(y) = S(c+e) = S(c)+ S(e) = S(e)
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Classical coding theory The Coset-Leader Algorithm

olfe=y—c ce( yelg, then
S(y) = S(c+e) = S(c)+ S(e) = S(e)

and y and e are in the same coset. The coset leader of that coset also
has the same syndrome. We have the following decoding algorithm.
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Classical coding theory The Coset-Leader Algorithm

olfe=y—c ce( yelg, then
S(y) = S(c+e) = S(c)+ S(e) = S(e)

and y and e are in the same coset. The coset leader of that coset also
has the same syndrome. We have the following decoding algorithm.

The Coset-Leader Algorithm

Q Let C C Iy be a linear (n, k) code and let y be the received vector.

Vlad Gheorghiu (CMU) Finite fields: An introduction. Part II. August 7, 2008 17 /18



Classical coding theory The Coset-Leader Algorithm

olfe=y—c ce( yelg, then
S(y) = S(c+e) = S(c)+ S(e) = S(e)

and y and e are in the same coset. The coset leader of that coset also
has the same syndrome. We have the following decoding algorithm.

The Coset-Leader Algorithm

Q Let C C Iy be a linear (n, k) code and let y be the received vector.

@ To correct errors in y, calculate S(y) and find the coset leader, say e, with
syndrome equal to S(y.
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Classical coding theory The Coset-Leader Algorithm

olfe=y—c ce( yelg, then
S(y) = S(c+e) = S(c)+ S(e) = S(e)

and y and e are in the same coset. The coset leader of that coset also
has the same syndrome. We have the following decoding algorithm.

The Coset-Leader Algorithm

Q Let C C Iy be a linear (n, k) code and let y be the received vector.

@ To correct errors in y, calculate S(y) and find the coset leader, say e, with
syndrome equal to S(y.

© Then decode y as x =y — e. Here x is the code word with minimum
distance to y.
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Classical coding theory Examples

Coset-Leader example

Discuss it on the board.
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