Finite fields: An introduction. Part II.

Vlad Gheorghiu

Department of Physics
Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A.

August 7, 2008

(1) Brief review of Part I (Jul 2, 2008)
(2) Construction of finite fields

- Polynomials over finite fields
- Explicit construction of the finite field \mathbb{F}_{q}, with $q=p^{n}$.
- Examples
(3) Classical coding theory
- Decoding methods
- The Coset-Leader Algorithm
- Examples

Brief review of Part I

(1) Finite fields

- Definitions

Brief review of Part I

(1) Finite fields

- Definitions
- Examples

Brief review of Part I

(1) Finite fields

- Definitions
- Examples
- The structure of finite fields

Brief review of Part I

(1) Finite fields

- Definitions
- Examples
- The structure of finite fields
(2) Classical codes over finite fields
- Linear codes: basic properties

Brief review of Part I

(1) Finite fields

- Definitions
- Examples
- The structure of finite fields
(2) Classical codes over finite fields
- Linear codes: basic properties
- Encoding methods

Brief review of Part I

(1) Finite fields

- Definitions
- Examples
- The structure of finite fields
(2) Classical codes over finite fields
- Linear codes: basic properties
- Encoding methods
- Hamming distance as a metric
- Let \mathbb{F} be a finite field. A polynomial over \mathbb{F} is an expression of the form

$$
f(x)=\sum_{i=1}^{n} a_{i} x^{i}=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

where $n=\operatorname{deg}(f)$ is a nonnegative integer called the degree of $f(x)$, $a_{i} \in \mathbb{F}$ for all $0 \leqslant i \leqslant n$ and x is a symbol not belonging to \mathbb{F}, called an indeterminate over \mathbb{F}.

Polynomials over finite fields

- Let \mathbb{F} be a finite field. A polynomial over \mathbb{F} is an expression of the form

$$
f(x)=\sum_{i=1}^{n} a_{i} x^{i}=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

where $n=\operatorname{deg}(f)$ is a nonnegative integer called the degree of $f(x)$, $a_{i} \in \mathbb{F}$ for all $0 \leqslant i \leqslant n$ and x is a symbol not belonging to \mathbb{F}, called an indeterminate over \mathbb{F}.

- We can define the sum and product of two polynomials using the usual rules of addition and multiplication over \mathbb{F}.

Polynomials over finite fields

- Let \mathbb{F} be a finite field. A polynomial over \mathbb{F} is an expression of the form

$$
f(x)=\sum_{i=1}^{n} a_{i} x^{i}=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

where $n=\operatorname{deg}(f)$ is a nonnegative integer called the degree of $f(x)$, $a_{i} \in \mathbb{F}$ for all $0 \leqslant i \leqslant n$ and x is a symbol not belonging to \mathbb{F}, called an indeterminate over \mathbb{F}.

- We can define the sum and product of two polynomials using the usual rules of addition and multiplication over \mathbb{F}.
- Example: let $f(x)=x^{2}+2 x+1$ and $g(x)=2 x+1$ be two polynomials over \mathbb{F}_{3}. Then

$$
f(x)+g(x)=x^{2}+x+2 \text { and } f(x) g(x)=2 x^{3}+2 x^{2}+x+1
$$

Polynomials over finite fields

- Let \mathbb{F} be a finite field. A polynomial over \mathbb{F} is an expression of the form

$$
f(x)=\sum_{i=1}^{n} a_{i} x^{i}=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

where $n=\operatorname{deg}(f)$ is a nonnegative integer called the degree of $f(x)$, $a_{i} \in \mathbb{F}$ for all $0 \leqslant i \leqslant n$ and x is a symbol not belonging to \mathbb{F}, called an indeterminate over \mathbb{F}.

- We can define the sum and product of two polynomials using the usual rules of addition and multiplication over \mathbb{F}.
- Example: let $f(x)=x^{2}+2 x+1$ and $g(x)=2 x+1$ be two polynomials over \mathbb{F}_{3}. Then

$$
f(x)+g(x)=x^{2}+x+2 \text { and } f(x) g(x)=2 x^{3}+2 x^{2}+x+1
$$

- The polynomials over a finite field \mathbb{F} form an integral domain and are denoted by $\mathbb{F}[x]$.

Theorem 1: Division Algorithm

Let $g \neq 0$ be a polynomial in $\mathbb{F}[x]$. Then for any $f \in \mathbb{F}[x]$ there exist polynomials $q, r \in \mathbb{F}[x]$ such that

$$
f=q g+r, \text { where } \operatorname{deg}(r)<\operatorname{deg}(g)
$$

Theorem 1: Division Algorithm

Let $g \neq 0$ be a polynomial in $\mathbb{F}[x]$. Then for any $f \in \mathbb{F}[x]$ there exist polynomials $q, r \in \mathbb{F}[x]$ such that

$$
f=q g+r, \text { where } \operatorname{deg}(r)<\operatorname{deg}(g)
$$

- Example: Consider $f(x)=2 x^{5}+x^{4}+4 x+3 \in \mathbb{F}_{5}[x]$, $g(x)=3 x^{2}+1 \in \mathbb{F}_{5}[x]$. Then $q(x)=4 x^{3}+2 x^{2}+2 x+1$ and $r(x)=2 x+2$, with $\operatorname{deg}(r)<\operatorname{deg}(g)$.

Theorem 1: Division Algorithm

Let $g \neq 0$ be a polynomial in $\mathbb{F}[x]$. Then for any $f \in \mathbb{F}[x]$ there exist polynomials $q, r \in \mathbb{F}[x]$ such that

$$
f=q g+r, \text { where } \operatorname{deg}(r)<\operatorname{deg}(g)
$$

- Example: Consider $f(x)=2 x^{5}+x^{4}+4 x+3 \in \mathbb{F}_{5}[x]$, $g(x)=3 x^{2}+1 \in \mathbb{F}_{5}[x]$. Then $q(x)=4 x^{3}+2 x^{2}+2 x+1$ and $r(x)=2 x+2$, with $\operatorname{deg}(r)<\operatorname{deg}(g)$.
- A polynomial with the leading term $a_{n}=1$ is called a monic polynomial. A polynomial of degree zero is called a constant polynomial.

Theorem 2: Greatest Common Divisor

Let $f_{1}, f_{2}, \ldots, f_{n}$ be polynomials in $\mathbb{F}[x]$ not all of which are 0 . Then there exists a uniquely determined monic polynomial $d \in \mathbb{F}[x]$ with the following properties: (i) d divides each $f_{j}, 1 \leqslant j \leqslant n$; (ii) any polynomial $c \in \mathbb{F}[x]$ dividing each $f_{j}, 1 \leqslant j \leqslant n$, divides d. Moreover, d can be expressed in the form

$$
d=b_{1} f_{1}+b_{2} f_{2}+\cdots+b_{n} f_{n}, \text { with } b_{1}, b_{2}, \ldots, b_{n} \in \mathbb{F}[x] .
$$

Theorem 2: Greatest Common Divisor

Let $f_{1}, f_{2}, \ldots, f_{n}$ be polynomials in $\mathbb{F}[x]$ not all of which are 0 . Then there exists a uniquely determined monic polynomial $d \in \mathbb{F}[x]$ with the following properties: (i) d divides each $f_{j}, 1 \leqslant j \leqslant n$; (ii) any polynomial $c \in \mathbb{F}[x]$ dividing each $f_{j}, 1 \leqslant j \leqslant n$, divides d. Moreover, d can be expressed in the form

$$
d=b_{1} f_{1}+b_{2} f_{2}+\cdots+b_{n} f_{n}, \text { with } b_{1}, b_{2}, \ldots, b_{n} \in \mathbb{F}[x] .
$$

- A polynomial $p \in \mathbb{F}[x]$ is said to be irreducible over \mathbb{F} (or prime in $\mathbb{F}[x]$) if p has positive degree and $p=b c$ with $b, c \in \mathbb{F}[x]$ implies that either b or c is a constant polynomial.

Theorem 2: Greatest Common Divisor

Let $f_{1}, f_{2}, \ldots, f_{n}$ be polynomials in $\mathbb{F}[x]$ not all of which are 0 . Then there exists a uniquely determined monic polynomial $d \in \mathbb{F}[x]$ with the following properties: (i) d divides each $f_{j}, 1 \leqslant j \leqslant n$; (ii) any polynomial $c \in \mathbb{F}[x]$ dividing each $f_{j}, 1 \leqslant j \leqslant n$, divides d. Moreover, d can be expressed in the form

$$
d=b_{1} f_{1}+b_{2} f_{2}+\cdots+b_{n} f_{n}, \text { with } b_{1}, b_{2}, \ldots, b_{n} \in \mathbb{F}[x] .
$$

- A polynomial $p \in \mathbb{F}[x]$ is said to be irreducible over \mathbb{F} (or prime in $\mathbb{F}[x]$) if p has positive degree and $p=b c$ with $b, c \in \mathbb{F}[x]$ implies that either b or c is a constant polynomial.
- Example: $x^{2}-2 \in \mathbb{Q}[x]$ is irreducible over the field \mathbb{Q} of rational numbers, but $x^{2}-2=(x+\sqrt{2})(x-\sqrt{2})$ is reducible over the field \mathbb{R} of real numbers.

Theorem 3: Unique Factorization in $\mathbb{F}[x]$

Any polynomial $f \in \mathbb{F}[x]$ of positive degree can be written in the form

$$
f=a p_{1}^{e_{1}} p_{2}^{2_{2}} \cdots p_{k}^{e_{k}},
$$

where $a \in \mathbb{F}, p_{1}, p_{2}, \ldots, p_{k}$ are distinct monic irreducible polynomials in $\mathbb{F}[x]$, and $e_{1}, e_{2}, \ldots, e_{k}$ are positive integers. Moreover, this factorization is unique apart from the order in which the factors occur.

Theorem 3: Unique Factorization in $\mathbb{F}[x]$

Any polynomial $f \in \mathbb{F}[x]$ of positive degree can be written in the form

$$
f=a p_{1}^{e_{1}} p_{2}^{2_{2}} \cdots p_{k}^{e_{k}},
$$

where $a \in \mathbb{F}, p_{1}, p_{2}, \ldots, p_{k}$ are distinct monic irreducible polynomials in $\mathbb{F}[x]$, and $e_{1}, e_{2}, \ldots, e_{k}$ are positive integers. Moreover, this factorization is unique apart from the order in which the factors occur.

- The above equation is called the canonical factorization of the polynomial f in $\mathbb{F}[x]$.

Theorem 3: Unique Factorization in $\mathbb{F}[x]$

Any polynomial $f \in \mathbb{F}[x]$ of positive degree can be written in the form

$$
f=a p_{1}^{e_{1}} p_{2}^{2_{2}} \cdots p_{k}^{e_{k}},
$$

where $a \in \mathbb{F}, p_{1}, p_{2}, \ldots, p_{k}$ are distinct monic irreducible polynomials in $\mathbb{F}[x]$, and $e_{1}, e_{2}, \ldots, e_{k}$ are positive integers. Moreover, this factorization is unique apart from the order in which the factors occur.

- The above equation is called the canonical factorization of the polynomial f in $\mathbb{F}[x]$.
- Central question about polynomials in $\mathbb{F}[x]$: decide if it is reducible or not. Not a trivial problem.
- An element $b \in \mathbb{F}$ is called a root (or a zero) of the polynomial $f \in \mathbb{F}[x]$ if $f(b)=0$.
- An element $b \in \mathbb{F}$ is called a root (or a zero) of the polynomial $f \in \mathbb{F}[x]$ if $f(b)=0$.

Theorem 4

An element $b \in \mathbb{F}$ is a root of the polynomial $f \in \mathbb{F}[x]$ if and only if $x-b$ divides $f(x)$.

- An element $b \in \mathbb{F}$ is called a root (or a zero) of the polynomial $f \in \mathbb{F}[x]$ if $f(b)=0$.

Theorem 4

An element $b \in \mathbb{F}$ is a root of the polynomial $f \in \mathbb{F}[x]$ if and only if $x-b$ divides $f(x)$.

- If f is an irreducible polynomial in $\mathbb{F}[x]$ of degree $\geqslant 2$, then Theorem 4 shows that f has no root in \mathbb{F}. The converse holds for polynomials of degree 2 or 3 , but not necessarily for polynomials of higher degree.
- An element $b \in \mathbb{F}$ is called a root (or a zero) of the polynomial $f \in \mathbb{F}[x]$ if $f(b)=0$.

Theorem 4

An element $b \in \mathbb{F}$ is a root of the polynomial $f \in \mathbb{F}[x]$ if and only if $x-b$ divides $f(x)$.

- If f is an irreducible polynomial in $\mathbb{F}[x]$ of degree $\geqslant 2$, then Theorem 4 shows that f has no root in \mathbb{F}. The converse holds for polynomials of degree 2 or 3 , but not necessarily for polynomials of higher degree.

Theorem 5

The polynomial $f \in \mathbb{F}[x]$ of degree 2 or 3 is irreducible in $\mathbb{F}[x]$ if and only if f has no root in \mathbb{F}.

Explicit construction of the finite field \mathbb{F}_{q}

Theorem 6

For $f \in \mathbb{F}[x]$, the residue class ring $\mathbb{F}[x] / f$ is a field if and only if f is irreducible over \mathbb{F}.

Explicit construction of the finite field \mathbb{F}_{q}

Theorem 6

For $f \in \mathbb{F}[x]$, the residue class ring $\mathbb{F}[x] / f$ is a field if and only if f is irreducible over \mathbb{F}.

In other words, to construct the finite field \mathbb{F}_{q}, with $q=p^{n}$,

Explicit construction of the finite field \mathbb{F}_{q}

Theorem 6

For $f \in \mathbb{F}[x]$, the residue class ring $\mathbb{F}[x] / f$ is a field if and only if f is irreducible over \mathbb{F}.

In other words, to construct the finite field \mathbb{F}_{q}, with $q=p^{n}$,
(1) Select a monic irreducible polynomial $f(x)$ of degree n in $\mathbb{F}_{p}[x]$ (it always exists).

Explicit construction of the finite field \mathbb{F}_{q}

Theorem 6

For $f \in \mathbb{F}[x]$, the residue class ring $\mathbb{F}[x] / f$ is a field if and only if f is irreducible over \mathbb{F}.

In other words, to construct the finite field \mathbb{F}_{q}, with $q=p^{n}$,
(1) Select a monic irreducible polynomial $f(x)$ of degree n in $\mathbb{F}_{p}[x]$ (it always exists).
(2) The distinct residue classes comprising $\mathbb{F}_{q}[x] / f$ are described explicitly as $r+(f)$, where r runs through all polynomials in \mathbb{F}_{p} with $\operatorname{deg}(r)<\operatorname{deg}(f)$. Two residue classes $g+(f)$ and $h+(f)$ are identical precisely if $g \equiv h \bmod f$, that is, $g-h$ is divisible by f. There are p^{n} polynomials in $\mathbb{F}_{p}[x]$, of degree smaller than n.

Explicit construction of the finite field \mathbb{F}_{q}

Theorem 6

For $f \in \mathbb{F}[x]$, the residue class ring $\mathbb{F}[x] / f$ is a field if and only if f is irreducible over \mathbb{F}.

In other words, to construct the finite field \mathbb{F}_{q}, with $q=p^{n}$,
(1) Select a monic irreducible polynomial $f(x)$ of degree n in $\mathbb{F}_{p}[x]$ (it always exists).
(2) The distinct residue classes comprising $\mathbb{F}_{q}[x] / f$ are described explicitly as $r+(f)$, where r runs through all polynomials in \mathbb{F}_{p} with $\operatorname{deg}(r)<\operatorname{deg}(f)$. Two residue classes $g+(f)$ and $h+(f)$ are identical precisely if $g \equiv h \bmod f$, that is, $g-h$ is divisible by f. There are p^{n} polynomials in $\mathbb{F}_{p}[x]$, of degree smaller than n.
(3) Identify each element of \mathbb{F}_{q} by an equivalence class. Construct the field table by computing sums and product of polynomials modulo f.

Examples

The finite field \mathbb{F}_{4} (also called $G F(4)$).

Examples

The finite field \mathbb{F}_{4} (also called $G F(4)$).

- Choose $f(x)=x^{2}+x+1 \in \mathbb{F}_{2}[x]$.

Examples

The finite field \mathbb{F}_{4} (also called $G F(4)$).

- Choose $f(x)=x^{2}+x+1 \in \mathbb{F}_{2}[x]$.
- The residue classes of $\mathbb{F}_{2}[x] / f$ are $\{[0],[1],[x],[x+1]\}$.

Examples

The finite field \mathbb{F}_{4} (also called $G F(4)$).

- Choose $f(x)=x^{2}+x+1 \in \mathbb{F}_{2}[x]$.
- The residue classes of $\mathbb{F}_{2}[x] / f$ are $\{[0],[1],[x],[x+1]\}$. The addition and multiplication tables are:

Examples

The finite field \mathbb{F}_{4} (also called $G F(4)$).

- Choose $f(x)=x^{2}+x+1 \in \mathbb{F}_{2}[x]$.
- The residue classes of $\mathbb{F}_{2}[x] / f$ are $\{[0],[1],[x],[x+1]\}$. The addition and multiplication tables are:

+	$[0]$	$[1]$	$[x]$	$[x+1]$
$[0]$	$[0]$	$[1]$	$[x]$	$[x+1]$
$[1]$	$[1]$	$[0]$	$[x+1]$	$[x]$
$[x]$	$[x]$	$[x+1]$	$[0]$	$[1]$
$[x+1]$	$[x+1]$	$[x]$	$[1]$	$[0]$

and

Examples

The finite field \mathbb{F}_{4} (also called $G F(4)$).

- Choose $f(x)=x^{2}+x+1 \in \mathbb{F}_{2}[x]$.
- The residue classes of $\mathbb{F}_{2}[x] / f$ are $\{[0],[1],[x],[x+1]\}$. The addition and multiplication tables are:

+	[0]	[1]	[x]	[$x+1$]
[0]	[0]	[1]	[x]	[$x+1$]
[1]	[1]	[0]	[$x+1$]	1] [x]
[x]	[x]	[$x+1$]	1] [0]	[1]
$[x+1]$	[$x+1$]	1] [x]	[1]	[0]
and				
*	[0]	[1]	[x] [x	$[x+1]$
[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[x] [x	$[x+1]$
[x]	[0]	[x] [x	[$x+1$]	[1]
[$x+1$]	[0] [x	$[x+1]$	[1]	[\times]

The finite field \mathbb{F}_{9}.

The finite field \mathbb{F}_{9}.

- Choose $f(x)=x^{2}+1 \in \mathbb{F}_{3}[x]$.

The finite field \mathbb{F}_{9}.

- Choose $f(x)=x^{2}+1 \in \mathbb{F}_{3}[x]$.
- The residue classes of $\mathbb{F}_{3}[x] / f$ are $\{[0],[1],[2],[x],[x+1],[x+2],[2 x],[2 x+1],[2 x+2]\}$.

The finite field \mathbb{F}_{9}.

- Choose $f(x)=x^{2}+1 \in \mathbb{F}_{3}[x]$.
- The residue classes of $\mathbb{F}_{3}[x] / f$ are $\{[0],[1],[2],[x],[x+1],[x+2],[2 x],[2 x+1],[2 x+2]\}$.
- Construct the addition and multiplication table. Too much EATEXcode to be put in a single slide...

Decoding methods

Theorem 7
A code C with minimum distance d_{C} can correct up to t errors if $d_{C} \geqslant 2 t+1$.

Decoding methods

Theorem 7

A code C with minimum distance d_{C} can correct up to t errors if $d_{C} \geqslant 2 t+1$.

Proof.

A ball $B_{t}(\mathbf{x})$ of radius t and center $\mathbf{x} \in \mathbb{F}_{q}^{n}$ consists of all vectors $\mathbf{y} \in \mathbb{F}_{q}^{n}$ such that $d(\mathbf{x}, \mathbf{y}) \leqslant t$. The nearest neighbor decoding rule ensures that each received word with t or fewer errors must be in a ball of radius t and center the transmitted code word. To correct t errors, the balls with code words \mathbf{x} as centers must not overlap. If $\mathbf{u} \in B_{t}(\mathbf{x})$ and $\mathbf{u} \in B_{t}(\mathbf{y})$, $\mathbf{x}, \mathbf{y} \in C, \mathbf{x} \neq \mathbf{y}$, then

$$
d(\mathbf{x}, \mathbf{y}) \leqslant d(\mathbf{x}, \mathbf{u})+d(\mathbf{u}, \mathbf{y}) \leqslant 2 t
$$

a contradiction to $d_{C} \geqslant 2 t+1$.

The following lemma is useful for determining the minimum distance of a code

The following lemma is useful for determining the minimum distance of a code

Lemma 8
A linear code C with parity-check matrix H has minimum distance $D_{C} \geqslant s+1$ if and only if any s columns of H are linearly independent.

The following lemma is useful for determining the minimum distance of a code

Lemma 8

A linear code C with parity-check matrix H has minimum distance $D_{C} \geqslant s+1$ if and only if any s columns of H are linearly independent.

Proof.

Assume there are s linearly dependent columns of H, then $\mathrm{Hc}^{\top}=\mathbf{0}$ and $w t(\mathbf{c}) \leqslant s$ for suitable $\mathbf{c} \in C, \mathbf{c} \neq 0$, hence $d_{C} \leqslant s$. Similarly, if any s columns of H are linearly independent, then there is no $\mathbf{c} \in C, \mathbf{c} \neq 0$, of weight $\leqslant s$, hence $d_{C} \geqslant s+1$.

- Let C be a (n, k) linear code over \mathbb{F}_{q}.

The Coset-Leader Algorithm

- Let C be a (n, k) linear code over \mathbb{F}_{q}.
- The vector space \mathbb{F}_{q}^{n} / C consists of all cosets

$$
\mathbf{a}+C=\{\mathbf{a}+\mathbf{c}: \mathbf{c} \in C\}
$$

with $\mathbf{a} \in \mathbb{F}_{q}^{n}$.

The Coset-Leader Algorithm

- Let C be a (n, k) linear code over \mathbb{F}_{q}.
- The vector space \mathbb{F}_{q}^{n} / C consists of all cosets

$$
\mathbf{a}+C=\{\mathbf{a}+\mathbf{c}: \mathbf{c} \in C\}
$$

with $\mathbf{a} \in \mathbb{F}_{q}^{n}$.

- Each coset contains q^{k} vectors and \mathbb{F}_{q}^{n} can be regarded as being partitioned into cosets of C, namely

The Coset-Leader Algorithm

- Let C be a (n, k) linear code over \mathbb{F}_{q}.
- The vector space \mathbb{F}_{q}^{n} / C consists of all cosets

$$
\mathbf{a}+C=\{\mathbf{a}+\mathbf{c}: \mathbf{c} \in C\}
$$

with $\mathbf{a} \in \mathbb{F}_{q}^{n}$.

- Each coset contains q^{k} vectors and \mathbb{F}_{q}^{n} can be regarded as being partitioned into cosets of C, namely

$$
\mathbb{F}_{q}^{n}=\left(\mathbf{a}^{(0)}+C\right) \cup\left(\mathbf{a}^{(1)}+C\right) \cup \cdots\left(\mathbf{a}^{(s)}+C\right)
$$

where $\mathbf{a}^{(0)}=\mathbf{0}$ and $s=q^{n-k}-1$.

The Coset-Leader Algorithm

- Let C be a (n, k) linear code over \mathbb{F}_{q}.
- The vector space \mathbb{F}_{q}^{n} / C consists of all cosets

$$
\mathbf{a}+C=\{\mathbf{a}+\mathbf{c}: \mathbf{c} \in C\}
$$

with $\mathbf{a} \in \mathbb{F}_{q}^{n}$.

- Each coset contains q^{k} vectors and \mathbb{F}_{q}^{n} can be regarded as being partitioned into cosets of C, namely

$$
\mathbb{F}_{q}^{n}=\left(\mathbf{a}^{(0)}+C\right) \cup\left(\mathbf{a}^{(1)}+C\right) \cup \cdots\left(\mathbf{a}^{(s)}+C\right)
$$

where $\mathbf{a}^{(0)}=\mathbf{0}$ and $s=q^{n-k}-1$.

- A received vector \mathbf{y} must be in one of the cosets, say $\mathbf{a}^{(i)}+C$. If the codeword \mathbf{c} was transmitted, then the error is given by $\mathbf{e}=\mathbf{y}-\mathbf{c}=\mathbf{a}^{(i)}+\mathbf{z} \in \mathbf{a}^{(i)}+C$ for suitable $\mathbf{z} \in C$.
- All possible error vectors \mathbf{e} of a received vector \mathbf{y} are the vectors in the coset of \mathbf{y}.
- All possible error vectors \mathbf{e} of a received vector \mathbf{y} are the vectors in the coset of \mathbf{y}.
- The most likely error vector is the vector \mathbf{e} with minimum weight in the coset of \mathbf{y}.
- All possible error vectors \mathbf{e} of a received vector \mathbf{y} are the vectors in the coset of \mathbf{y}.
- The most likely error vector is the vector \mathbf{e} with minimum weight in the coset of \mathbf{y}.
- Thus we decode \mathbf{y} as $\mathbf{x}=\mathbf{y}$ - \mathbf{e}.
- All possible error vectors \mathbf{e} of a received vector \mathbf{y} are the vectors in the coset of \mathbf{y}.
- The most likely error vector is the vector \mathbf{e} with minimum weight in the coset of \mathbf{y}.
- Thus we decode \mathbf{y} as $\mathbf{x}=\mathbf{y}$ - \mathbf{e}.

Definition

Let $C \subseteq \mathbb{F}_{q}^{n}$ be a linear (n, k) code and let \mathbb{F}_{q}^{n} / C be the factor space. An element of minimum weight in a coset $\mathbf{a}+C$ is called coset leader of $\mathbf{a}+C$. If several vectors in $\mathbf{a}+C$ have minimum weight, we choose one of them as coset leader.

Definition

Let H be the parity-check matrix of a linear (n, k) code C. Then the vector $S(\mathbf{y})=H \mathbf{y}^{\top}$ of length $n-k$ is called the syndrome of \mathbf{y}.

Definition

Let H be the parity-check matrix of a linear (n, k) code C. Then the vector $S(\mathbf{y})=H \mathbf{y}^{T}$ of length $n-k$ is called the syndrome of \mathbf{y}.

Theorem 9

For $\mathbf{y}, \mathbf{z} \in \mathbb{F}_{q}^{n}$ we have:

Definition

Let H be the parity-check matrix of a linear (n, k) code C. Then the vector $S(\mathbf{y})=H \mathbf{y}^{T}$ of length $n-k$ is called the syndrome of \mathbf{y}.

Theorem 9

For $\mathbf{y}, \mathbf{z} \in \mathbb{F}_{q}^{n}$ we have:
(1) $S(\mathbf{y})=\mathbf{0}$ if and only if $\mathbf{y} \in C$

Definition

Let H be the parity-check matrix of a linear (n, k) code C. Then the vector $S(\mathbf{y})=H \mathbf{y}^{T}$ of length $n-k$ is called the syndrome of \mathbf{y}.

Theorem 9

For $\mathbf{y}, \mathbf{z} \in \mathbb{F}_{q}^{n}$ we have:
(1) $S(\mathbf{y})=\mathbf{0}$ if and only if $\mathbf{y} \in C$
(2) $S(\mathbf{y})=S(\mathbf{z})$ if and only if $\mathbf{y}+C=\mathbf{z}+C$

Definition

Let H be the parity-check matrix of a linear (n, k) code C. Then the vector $S(\mathbf{y})=H \mathbf{y}^{\top}$ of length $n-k$ is called the syndrome of \mathbf{y}.

Theorem 9

For $\mathbf{y}, \mathbf{z} \in \mathbb{F}_{q}^{n}$ we have:
(1) $S(\mathbf{y})=\mathbf{0}$ if and only if $\mathbf{y} \in C$
(2) $S(\mathbf{y})=S(\mathbf{z})$ if and only if $\mathbf{y}+C=\mathbf{z}+C$

Proof.

- 1) follows immediately from the definition of C in terms of H.

Definition

Let H be the parity-check matrix of a linear (n, k) code C. Then the vector $S(\mathbf{y})=H \mathbf{y}^{\top}$ of length $n-k$ is called the syndrome of \mathbf{y}.

Theorem 9

For $\mathbf{y}, \mathbf{z} \in \mathbb{F}_{q}^{n}$ we have:
(1) $S(\mathbf{y})=\mathbf{0}$ if and only if $\mathbf{y} \in C$
(2) $S(\mathbf{y})=S(\mathbf{z})$ if and only if $\mathbf{y}+C=\mathbf{z}+C$

Proof.

- 1) follows immediately from the definition of C in terms of H.
- For 2) note that $S(\mathbf{y})=S(\mathbf{z})$ if and only if $\mathrm{Hy}^{\top}=H \mathbf{z}^{\top}$ if and only if $H(\mathbf{y}-\mathbf{z})^{T}=\mathbf{0}$ if and only if $\mathbf{y}-\mathbf{z} \in C$ if and only if $\mathbf{y}+C=\mathbf{z}+C$.
- If $\mathbf{e}=\mathbf{y}-\mathbf{c}, \mathbf{c} \in C, \mathbf{y} \in \mathbb{F}_{q}^{n}$, then
- If $\mathbf{e}=\mathbf{y}-\mathbf{c}, \mathbf{c} \in C, \mathbf{y} \in \mathbb{F}_{q}^{n}$, then

$$
S(\mathbf{y})=S(\mathbf{c}+\mathbf{e})=S(\mathbf{c})+S(\mathbf{e})=S(\mathbf{e})
$$

- If $\mathbf{e}=\mathbf{y}-\mathbf{c}, \mathbf{c} \in C, \mathbf{y} \in \mathbb{F}_{q}^{n}$, then

$$
S(\mathbf{y})=S(\mathbf{c}+\mathbf{e})=S(\mathbf{c})+S(\mathbf{e})=S(\mathbf{e})
$$

and \mathbf{y} and \mathbf{e} are in the same coset. The coset leader of that coset also has the same syndrome. We have the following decoding algorithm.

- If $\mathbf{e}=\mathbf{y}-\mathbf{c}, \mathbf{c} \in C, \mathbf{y} \in \mathbb{F}_{q}^{n}$, then

$$
S(\mathbf{y})=S(\mathbf{c}+\mathbf{e})=S(\mathbf{c})+S(\mathbf{e})=S(\mathbf{e})
$$

and \mathbf{y} and \mathbf{e} are in the same coset. The coset leader of that coset also has the same syndrome. We have the following decoding algorithm.

The Coset-Leader Algorithm

(1) Let $C \subseteq \mathbb{F}_{q}^{n}$ be a linear (n, k) code and let \mathbf{y} be the received vector.

- If $\mathbf{e}=\mathbf{y}-\mathbf{c}, \mathbf{c} \in C, \mathbf{y} \in \mathbb{F}_{q}^{n}$, then

$$
S(\mathbf{y})=S(\mathbf{c}+\mathbf{e})=S(\mathbf{c})+S(\mathbf{e})=S(\mathbf{e})
$$

and \mathbf{y} and \mathbf{e} are in the same coset. The coset leader of that coset also has the same syndrome. We have the following decoding algorithm.

The Coset-Leader Algorithm

(1) Let $C \subseteq \mathbb{F}_{q}^{n}$ be a linear (n, k) code and let \mathbf{y} be the received vector.
(2) To correct errors in \mathbf{y}, calculate $S(\mathbf{y})$ and find the coset leader, say \mathbf{e}, with syndrome equal to $S(\mathbf{y}$.

- If $\mathbf{e}=\mathbf{y}-\mathbf{c}, \mathbf{c} \in C, \mathbf{y} \in \mathbb{F}_{q}^{n}$, then

$$
S(\mathbf{y})=S(\mathbf{c}+\mathbf{e})=S(\mathbf{c})+S(\mathbf{e})=S(\mathbf{e})
$$

and \mathbf{y} and \mathbf{e} are in the same coset. The coset leader of that coset also has the same syndrome. We have the following decoding algorithm.

The Coset-Leader Algorithm

(1) Let $C \subseteq \mathbb{F}_{q}^{n}$ be a linear (n, k) code and let \mathbf{y} be the received vector.
(2) To correct errors in \mathbf{y}, calculate $S(\mathbf{y})$ and find the coset leader, say \mathbf{e}, with syndrome equal to $S(\mathbf{y}$.
(3) Then decode \mathbf{y} as $\mathbf{x}=\mathbf{y}-\mathbf{e}$. Here \mathbf{x} is the code word with minimum distance to \mathbf{y}.

Coset-Leader example

Discuss it on the board.

