Finite fields: An introduction

Vlad Gheorghiu

Department of Physics Carnegie Mellon University Pittsburgh, PA 15213, U.S.A.

July 2, 2008

Outline

1 Finite fields

Definitions

- Further definitions
- Examples
- The structure of finite fields

2 Classical codes over finite fields

- Introduction
- Linear codes: basic properties
- Encoding methods
- Hamming distance as a metric

• A field $(F,+,\cdot)$ is a set F, together with two binary operations on $F \times F$ denoted by + (addition) and \cdot (multiplication) such that:

- A *field* $(F,+,\cdot)$ is a set F, together with two binary operations on $F \times F$ denoted by + (addition) and \cdot (multiplication) such that:
 - 1) (F,+) forms an Abelian group under addition. The neutral element is denoted by 0.

- A field $(F,+,\cdot)$ is a set F, together with two binary operations on $F \times F$ denoted by + (addition) and \cdot (multiplication) such that:
 - 1) (F,+) forms an Abelian group under addition. The neutral element is denoted by 0.
 - 2) $(F \setminus \{0\}, \cdot)$ forms an Abelian group under multiplication. The neutral element is denoted by 1.

- A field $(F,+,\cdot)$ is a set F, together with two binary operations on $F \times F$ denoted by + (addition) and \cdot (multiplication) such that:
 - 1) (F,+) forms an Abelian group under addition. The neutral element is denoted by 0.
 - 2) $(F \setminus \{0\}, \cdot)$ forms an Abelian group under multiplication. The neutral element is denoted by 1.
 - 3) The multiplication operation is distributive over the addition.

- A field $(F,+,\cdot)$ is a set F, together with two binary operations on $F \times F$ denoted by + (addition) and \cdot (multiplication) such that:
 - 1) (F,+) forms an Abelian group under addition. The neutral element is denoted by 0.
 - 2) $(F \setminus \{0\}, \cdot)$ forms an Abelian group under multiplication. The neutral element is denoted by 1.
 - 3) The multiplication operation is distributive over the addition.

Observation

A field does not contain any divizors of zero, that is, for any $a, b \in \mathbb{F}$, ab = 0 implies either a = 0 or b = 0. This property is extremely important in solving systems of linear equations.

・ロト ・得ト ・ヨト ・ヨト

 More intuitively, a field is an algebraic structure in which the operations of addition, subtraction, multiplication and division (except division by zero) may be performed, and the familiar rules of ordinary arithmetic hold.

- More intuitively, a field is an algebraic structure in which the operations of addition, subtraction, multiplication and division (except division by zero) may be performed, and the familiar rules of ordinary arithmetic hold.
- A *finite field* is a field in which *F* has a finitely many elements.

- More intuitively, a field is an algebraic structure in which the operations of addition, subtraction, multiplication and division (except division by zero) may be performed, and the familiar rules of ordinary arithmetic hold.
- A *finite field* is a field in which *F* has a finitely many elements.
- A subset \mathbb{K} of a field \mathbb{F} that is itself a field under the operations of \mathbb{F} is called a *subfield*.

- More intuitively, a field is an algebraic structure in which the operations of addition, subtraction, multiplication and division (except division by zero) may be performed, and the familiar rules of ordinary arithmetic hold.
- A *finite field* is a field in which *F* has a finitely many elements.
- A subset \mathbb{K} of a field \mathbb{F} that is itself a field under the operations of \mathbb{F} is called a *subfield*.

Observation

If \mathbb{K} is a subfield of a finite field \mathbb{F}_p , p prime, then \mathbb{K} must contain the elements 0 and 1, and so all other elements of \mathbb{F}_p by the closure of \mathbb{K} under addition. Then \mathbb{F} does not contain any proper subfield. We are led to the following concept.

Further definitions

• A field containing no proper subfields is called a *prime field*.

- A field containing no proper subfields is called a *prime field*.
- The intersection of any nonempty collection of subfields of a given field 𝔅 is again a subfield. The intersection of *all* subfields of 𝔅 is called the *prime subfield* of 𝔅.

- A field containing no proper subfields is called a *prime field*.
- The intersection of any nonempty collection of subfields of a given field 𝔅 is again a subfield. The intersection of *all* subfields of 𝔅 is called the *prime subfield* of 𝔅.
- The *characteristic* of a field \mathbb{F} is the smallest integer *n* such that $1 + 1 + \cdots + 1(n \text{ times }) = 0.$

 $\bullet\,$ The complex numbers $\mathbb{C},$ under the usual operations of addition and multiplication.

Examples

- $\bullet\,$ The complex numbers $\mathbb{C},$ under the usual operations of addition and multiplication.
- The rational numbers Q = {a/b with a, b ∈ Z, b ≠ 0} where Z is the set of integers. The field of rational numbers is a subfield of C containing no proper subfields.

- $\bullet\,$ The complex numbers $\mathbb{C},$ under the usual operations of addition and multiplication.
- The rational numbers Q = {a/b with a, b ∈ Z, b ≠ 0} where Z is the set of integers. The field of rational numbers is a subfield of C containing no proper subfields.
- For a given field \mathbb{F} , the set $\mathbb{F}(X)$ of rational functions in the variable X with coefficients in \mathbb{F} is a field.

- $\bullet\,$ The complex numbers $\mathbb{C},$ under the usual operations of addition and multiplication.
- The rational numbers Q = {a/b with a, b ∈ Z, b ≠ 0} where Z is the set of integers. The field of rational numbers is a subfield of C containing no proper subfields.
- For a given field \mathbb{F} , the set $\mathbb{F}(X)$ of rational functions in the variable X with coefficients in \mathbb{F} is a field.
- The set Z_p of integers modulo p, where p is prime. This is a finite field with p elements, usually denoted by F_p.

- $\bullet\,$ The complex numbers $\mathbb{C},$ under the usual operations of addition and multiplication.
- The rational numbers Q = {a/b with a, b ∈ Z, b ≠ 0} where Z is the set of integers. The field of rational numbers is a subfield of C containing no proper subfields.
- For a given field 𝔽, the set 𝔅(X) of rational functions in the variable X with coefficients in 𝔅 is a field.
- The set Z_p of integers modulo p, where p is prime. This is a finite field with p elements, usually denoted by F_p.
- Taking p = 2, we obtain the smallest field, 𝔽₂, which has only two elements: 0 and 1. This field has important uses in computer science, especially in cryptography and coding theory.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Lemma 1

If the characteristic of a field is nonzero, then the characteristic is prime. The characteristic of a finite field is always prime.

Lemma 1

If the characteristic of a field is nonzero, then the characteristic is prime. The characteristic of a finite field is always prime.

Lemma 1

If the characteristic of a field is nonzero, then the characteristic is prime. The characteristic of a finite field is always prime.

Proof.

• Suppose the characteristic *n* of a field \mathbb{F} factors as n_1n_2 , with $1 < n_1, n_2 < n$; thus $n_1n_2 \cdot 1 = 0$.

Lemma 1

If the characteristic of a field is nonzero, then the characteristic is prime. The characteristic of a finite field is always prime.

- Suppose the characteristic *n* of a field \mathbb{F} factors as n_1n_2 , with $1 < n_1, n_2 < n$; thus $n_1n_2 \cdot 1 = 0$.
- Since there are no divisors of zero in \mathbb{F} , either $n_1 \cdot 1$ or $n_2 \cdot 1$ is zero.

Lemma 1

If the characteristic of a field is nonzero, then the characteristic is prime. The characteristic of a finite field is always prime.

- Suppose the characteristic *n* of a field \mathbb{F} factors as n_1n_2 , with $1 < n_1, n_2 < n$; thus $n_1n_2 \cdot 1 = 0$.
- Since there are no divisors of zero in \mathbb{F} , either $n_1 \cdot 1$ or $n_2 \cdot 1$ is zero.
- It follows that either (n₁ · 1)a = n₁a = 0 or (n₂ · 1)a = n₂a = 0 for all a ∈ F, in contradiction to the definition of the characteristic n, hence the characteristic is zero or prime.

Lemma 1

If the characteristic of a field is nonzero, then the characteristic is prime. The characteristic of a finite field is always prime.

Proof.

- Suppose the characteristic *n* of a field \mathbb{F} factors as n_1n_2 , with $1 < n_1, n_2 < n$; thus $n_1n_2 \cdot 1 = 0$.
- Since there are no divisors of zero in \mathbb{F} , either $n_1 \cdot 1$ or $n_2 \cdot 1$ is zero.
- It follows that either (n₁ · 1)a = n₁a = 0 or (n₂ · 1)a = n₂a = 0 for all a ∈ F, in contradiction to the definition of the characteristic n, hence the characteristic is zero or prime.

Observation: The field of rational numbers, real numbers and complexnumbers all have characteristic zero.

Vlad Gheorghiu (CMU)

Finite fields: An introduction

July 2, 2008 7 / 20

Let \mathbb{F} be a finite field containing a subfield \mathbb{K} with q elements. Then \mathbb{F} is a vector space over \mathbb{K} and $|\mathbb{F}| = q^m$, where m is the dimension of \mathbb{F} viwed as a vector space over \mathbb{K} .

Let \mathbb{F} be a finite field containing a subfield \mathbb{K} with q elements. Then \mathbb{F} is a vector space over \mathbb{K} and $|\mathbb{F}| = q^m$, where m is the dimension of \mathbb{F} viwed as a vector space over \mathbb{K} .

Let \mathbb{F} be a finite field containing a subfield \mathbb{K} with q elements. Then \mathbb{F} is a vector space over \mathbb{K} and $|\mathbb{F}| = q^m$, where m is the dimension of \mathbb{F} viwed as a vector space over \mathbb{K} .

Proof.

• It is straightforward to verify that \mathbb{F} is a vector space over \mathbb{K} .

Let \mathbb{F} be a finite field containing a subfield \mathbb{K} with q elements. Then \mathbb{F} is a vector space over \mathbb{K} and $|\mathbb{F}| = q^m$, where m is the dimension of \mathbb{F} viwed as a vector space over \mathbb{K} .

- It is straightforward to verify that ${\mathbb F}$ is a vector space over ${\mathbb K}.$
- Let $\mathcal{B} = \{\beta_1, \beta_2, \dots, \beta_m\}$ be a basis for \mathbb{F} over \mathbb{K} .

Let \mathbb{F} be a finite field containing a subfield \mathbb{K} with q elements. Then \mathbb{F} is a vector space over \mathbb{K} and $|\mathbb{F}| = q^m$, where m is the dimension of \mathbb{F} viwed as a vector space over \mathbb{K} .

- It is straightforward to verify that \mathbb{F} is a vector space over \mathbb{K} .
- Let B = {β₁, β₂,..., β_m} be a basis for F over K.
- Every α ∈ 𝔽 can be written uniquely as α = a₁β₁ + ··· + a_mβ_m, where a_i ∈ 𝔅 and the sequence a₁, a₂, ..., a_m is uniquely determined by α.

Let \mathbb{F} be a finite field containing a subfield \mathbb{K} with q elements. Then \mathbb{F} is a vector space over \mathbb{K} and $|\mathbb{F}| = q^m$, where m is the dimension of \mathbb{F} viwed as a vector space over \mathbb{K} .

Proof.

- It is straightforward to verify that \mathbb{F} is a vector space over \mathbb{K} .
- Let $\mathcal{B} = \{\beta_1, \beta_2, \dots, \beta_m\}$ be a basis for \mathbb{F} over \mathbb{K} .
- Every α ∈ 𝔽 can be written uniquely as α = a₁β₁ + ··· + a_mβ_m, where a_i ∈ 𝔅 and the sequence a₁, a₂, ..., a_m is uniquely determined by α.
- There are $|\mathbb{K}|^m = q^m$ distinct sequences of coefficients, because there are $|\mathbb{K}| = q$ choices for each a_i .

・ロト ・同ト ・ヨト ・ヨト

Let \mathbb{F} be a finite field containing a subfield \mathbb{K} with q elements. Then \mathbb{F} is a vector space over \mathbb{K} and $|\mathbb{F}| = q^m$, where m is the dimension of \mathbb{F} viwed as a vector space over \mathbb{K} .

Proof.

- It is straightforward to verify that \mathbb{F} is a vector space over \mathbb{K} .
- Let $\mathcal{B} = \{\beta_1, \beta_2, \dots, \beta_m\}$ be a basis for \mathbb{F} over \mathbb{K} .
- Every α ∈ 𝔽 can be written uniquely as α = a₁β₁ + · · · + a_mβ_m, where a_i ∈ 𝔅 and the sequence a₁, a₂, . . . , a_m is uniquely determined by α.
- There are $|\mathbb{K}|^m = q^m$ distinct sequences of coefficients, because there are $|\mathbb{K}| = q$ choices for each a_i .

The *m* occuring in Lemma 2, which is the dimension of \mathbb{F} as a vector space over \mathbb{K} , is called the *degree* of \mathbb{F} over \mathbb{K} .

Vlad Gheorghiu (CMU)

Finite fields: An introduction

July 2, 2008 8 / 20

Theorem 1

The prime subfield of a finite field \mathbb{F} is isomorphic to \mathbb{F}_p , where p is the characteristic of \mathbb{F} .

Theorem 1

The prime subfield of a finite field \mathbb{F} is isomorphic to \mathbb{F}_p , where p is the characteristic of \mathbb{F} .

Theorem 2

Let \mathbb{F} be a finite field. The cardinality of \mathbb{F} is p^m , where the prime p is the characteristic of F and m is the degree of F over its prime subfield.

Theorem 1

The prime subfield of a finite field \mathbb{F} is isomorphic to \mathbb{F}_p , where p is the characteristic of \mathbb{F} .

Theorem 2

Let \mathbb{F} be a finite field. The cardinality of \mathbb{F} is p^m , where the prime p is the characteristic of F and m is the degree of F over its prime subfield.

Proof. (of Theorem 2).

Since \mathbb{F} is finite, its characteristic is prime (according to Lemma 1). Therefore the prime subfield \mathbb{K} of \mathbb{F} is isomorphic to \mathbb{F}_p , by Theorem 1. By Lemma 2, the cardinality of \mathbb{F} is just $|\mathcal{K}|^m = p^m$.

(日) (部) (3) (3)

Theorem 3 (Existence of finite fields)

For every prime p and positive integer $n \ge 1$ there is a finite field with p^n elements. Any two finite fields with p^n elements are isomorphic.

Theorem 3 (Existence of finite fields)

For every prime p and positive integer $n \ge 1$ there is a finite field with p^n elements. Any two finite fields with p^n elements are isomorphic.

• The previous theorem shows that a finite field of a given order is unique up to field isomorphism.

Theorem 3 (Existence of finite fields)

For every prime p and positive integer $n \ge 1$ there is a finite field with p^n elements. Any two finite fields with p^n elements are isomorphic.

- The previous theorem shows that a finite field of a given order is unique up to field isomorphism.
- Thus one speaks of "the" finite field of a particular order q. It is usually denoted by GF(q), where G stands for Galois (Evariste Galois, 1811-1832) and F for field.

Let \mathbb{F} be a finite field with p^n elements. Every subfield of \mathbb{F} has p^m elements for some integer *m* dividing *n*. Conversely, for any integer *m* dividing *n* there is a unique subfield of \mathbb{F} of order p^m .

Let \mathbb{F} be a finite field with p^n elements. Every subfield of \mathbb{F} has p^m elements for some integer m dividing n. Conversely, for any integer m dividing n there is a unique subfield of \mathbb{F} of order p^m .

Proof.

 A subfield of the finite field GF(pⁿ) must have p^m distinct elements for some positive integer m with m ≤ n.

Let \mathbb{F} be a finite field with p^n elements. Every subfield of \mathbb{F} has p^m elements for some integer m dividing n. Conversely, for any integer m dividing n there is a unique subfield of \mathbb{F} of order p^m .

Proof.

- A subfield of the finite field GF(pⁿ) must have p^m distinct elements for some positive integer m with m ≤ n.
- By Lemma 2, p^n must be a power of p^m , so *m* must divide *n*.

Let \mathbb{F} be a finite field with p^n elements. Every subfield of \mathbb{F} has p^m elements for some integer m dividing n. Conversely, for any integer m dividing n there is a unique subfield of \mathbb{F} of order p^m .

Proof.

- A subfield of the finite field GF(pⁿ) must have p^m distinct elements for some positive integer m with m ≤ n.
- By Lemma 2, p^n must be a power of p^m , so *m* must divide *n*.

Theorem 5 (Multiplicative group structure)

For every finite field \mathbb{F} , the multiplicative group $(F \setminus \{0\}, \cdot)$ is cyclic.

Introduction

• In practice, all communication channels are noisy.

- In practice, all communication channels are noisy.
- One of the main problems in algebraic coding theory is to make the errors, which occur for instance because of noisy channels, extremely improbable.

- In practice, all communication channels are noisy.
- One of the main problems in algebraic coding theory is to make the errors, which occur for instance because of noisy channels, extremely improbable.
- A basic idea is to transmit redundant information together with the original message one wants to communicate.

- In practice, all communication channels are noisy.
- One of the main problems in algebraic coding theory is to make the errors, which occur for instance because of noisy channels, extremely improbable.
- A basic idea is to transmit redundant information together with the original message one wants to communicate.
- In common applications, a message is considered to be a fixed finite word on a fixed finite alphabet.

• A code is an injection from a set of messages to a set of words on a fixed finite alphabet. The words in the range of this function are called codewords.

- A code is an injection from a set of messages to a set of words on a fixed finite alphabet. The words in the range of this function are called codewords.
- One requires a code to be injective so that one can decode the sequence that is receive.

- A code is an injection from a set of messages to a set of words on a fixed finite alphabet. The words in the range of this function are called codewords.
- One requires a code to be injective so that one can decode the sequence that is receive.
- Main goal: detect and correct the errors.

- A code is an injection from a set of messages to a set of words on a fixed finite alphabet. The words in the range of this function are called codewords.
- One requires a code to be injective so that one can decode the sequence that is receive.
- Main goal: detect and correct the errors.
- Usually the detection of errors is accomplished by noticing that the received sequence is not a codeword.

• For some codes, it is possible for the receiver to determine, with high probability, the intended message when the received sequence is not a codeword.

- For some codes, it is possible for the receiver to determine, with high probability, the intended message when the received sequence is not a codeword.
- Such codes are called *error-correcting codes*.

- For some codes, it is possible for the receiver to determine, with high probability, the intended message when the received sequence is not a codeword.
- Such codes are called error-correcting codes.
- Error-correcting codes are often called *algebraic codes* because they are usually constructed using some algebraic system, very often a finite field.

Definition

Let \mathbb{F}_q^n denote the set of all *n*-tuples over a finite field \mathbb{F}_q :

$$\mathbb{F}_q^n = \{ (a_1, \ldots, a_n) \mid a_i \in \mathbb{F}, i = 1, \ldots, n \}.$$

Definition

Let \mathbb{F}_{q}^{n} denote the set of all *n*-tuples over a finite field \mathbb{F}_{q} :

$$\mathbb{F}_q^n = \{(a_1,\ldots,a_n) \mid a_i \in \mathbb{F}, i = 1,\ldots,n\}.$$

• \mathbb{F}_q^n is a vector space over the field \mathbb{F}_q , of dimension n.

Definition

Let \mathbb{F}_{q}^{n} denote the set of all *n*-tuples over a finite field \mathbb{F}_{q} :

$$\mathbb{F}_q^n = \{(a_1,\ldots,a_n) \mid a_i \in \mathbb{F}, i = 1,\ldots,n\}.$$

- \mathbb{F}_{q}^{n} is a vector space over the field \mathbb{F}_{q} , of dimension n.
- The messages are assumed to be elements of \mathbb{F}_q^k for some $k \ge 1$.

Definition

Let \mathbb{F}_{q}^{n} denote the set of all *n*-tuples over a finite field \mathbb{F}_{q} :

$$\mathbb{F}_q^n = \{(a_1,\ldots,a_n) \mid a_i \in \mathbb{F}, i = 1,\ldots,n\}.$$

- \mathbb{F}_{q}^{n} is a vector space over the field \mathbb{F}_{q} , of dimension n.
- The messages are assumed to be elements of \mathbb{F}_{q}^{k} for some $k \ge 1$.
- There are q^k distinct messages that can be sent.

Definition

Let \mathbb{F}_q^n denote the set of all *n*-tuples over a finite field \mathbb{F}_q :

$$\mathbb{F}_q^n = \{(a_1,\ldots,a_n) \mid a_i \in \mathbb{F}, i = 1,\ldots,n\}.$$

- \mathbb{F}_{q}^{n} is a vector space over the field \mathbb{F}_{q} , of dimension n.
- The messages are assumed to be elements of \mathbb{F}_{a}^{k} for some $k \ge 1$.
- There are q^k distinct messages that can be sent.
- The codewords are assumed to be elements of \mathbb{F}_q^n for some $n \ge k$.

• A code is an injective function from \mathbb{F}_q^k to \mathbb{F}_q^n . The codewords are the range of this function.

- A code is an injective function from \mathbb{F}_q^k to \mathbb{F}_q^n . The codewords are the range of this function.
- We are particularly interested in those codes for which the range is a subspace of Fⁿ_q, for then we can use results of linear algebra to analyze the code.

- A code is an injective function from \mathbb{F}_q^k to \mathbb{F}_q^n . The codewords are the range of this function.
- We are particularly interested in those codes for which the range is a subspace of Fⁿ_q, for then we can use results of linear algebra to analyze the code.

A linear code *C* is a subspace of the vector space \mathbb{F}_q^n . Such a code is called a *q*-ary code; the code is *binary* if q = 2 and *ternary* if q = 3. The number *n* is the length of the code.

• Since a linear code C is a subspace of \mathbb{F}_q^n , it will contain q^k distinct codewords for some k with $0 \le k \le n$. The integer k is called the dimension of the linear code C.

- Since a linear code C is a subspace of \mathbb{F}_q^n , it will contain q^k distinct codewords for some k with $0 \le k \le n$. The integer k is called the dimension of the linear code C.
- One can also regard k as the length of each uncoded message, for our messages will be elements from the set F^k_q. We denote such a code C as an [n,k] linear code.

- Since a linear code C is a subspace of \mathbb{F}_q^n , it will contain q^k distinct codewords for some k with $0 \le k \le n$. The integer k is called the dimension of the linear code C.
- One can also regard k as the length of each uncoded message, for our messages will be elements from the set F^k_q. We denote such a code C as an [n,k] linear code.
- Example 1: the *q*-ary repetition code which acts by repeating the message *a* ∈ 𝔽_{*q*} that is to be encoded a total of *n* times: *a* → *a*...*a*. This is an [*n*, 1] linear code.

- Since a linear code C is a subspace of \mathbb{F}_q^n , it will contain q^k distinct codewords for some k with $0 \le k \le n$. The integer k is called the dimension of the linear code C.
- One can also regard k as the length of each uncoded message, for our messages will be elements from the set F^k_q. We denote such a code C as an [n,k] linear code.
- Example 1: the q-ary repetition code which acts by repeating the message a ∈ 𝔽_q that is to be encoded a total of n times: a → a...a. This is an [n, 1] linear code.
- Example 2: The binary parity check code over 𝔽₂: (a₁,..., a_n) → (a₁,..., a_n, ∑ⁿ_{i=1} a_i). This is an [n, n - 1] linear code, but with no error-correcting ability.

Encoding methods

• There are two well known matrix encoding techniques: the parity-check matrix and the generator matrix.

Encoding methods

• There are two well known matrix encoding techniques: the parity-check matrix and the generator matrix.

Parity chech matrix

Let *H* be a $(n - k) \times n$ matrix over \mathbb{F}_q of rank n - k. Then $C = \{ \mathbf{c} \in \mathbb{F}_q^n | H \mathbf{c}^T = 0 \}$ is a linear [n, k] code.

Encoding methods

• There are two well known matrix encoding techniques: the parity-check matrix and the generator matrix.

Parity chech matrix

Let *H* be a $(n - k) \times n$ matrix over \mathbb{F}_q of rank n - k. Then $C = \{ \mathbf{c} \in \mathbb{F}_q^n | H \mathbf{c}^T = 0 \}$ is a linear [n, k] code.

Generator matrix

Let G be a $k \times n$ matrix over \mathbb{F}_q . The set $C = \{ \mathbf{a}G \mid \mathbf{a} \in \mathbb{F}_q^k \}$ is a linear code, of dimension k equal to the rank of G.

Definition

The Hamming distance $d(\mathbf{x}, \mathbf{y})$ between two vectors \mathbf{x} and \mathbf{y} in \mathbb{F}_q^n is defined as the number of coordinates where the vectors differ. The Hamming weight $wt(\mathbf{x})$ of a vector \mathbf{x} is the number of coordinates where the vector is nonzero.

Definition

The Hamming distance $d(\mathbf{x}, \mathbf{y})$ between two vectors \mathbf{x} and \mathbf{y} in \mathbb{F}_q^n is defined as the number of coordinates where the vectors differ. The Hamming weight $wt(\mathbf{x})$ of a vector \mathbf{x} is the number of coordinates where the vector is nonzero.

Proposition

The Hamming distance function is a metric. That is, for all vectors ${\bf u}, {\bf v}$ and ${\bf w}:$

Definition

The Hamming distance $d(\mathbf{x}, \mathbf{y})$ between two vectors \mathbf{x} and \mathbf{y} in \mathbb{F}_q^n is defined as the number of coordinates where the vectors differ. The Hamming weight $wt(\mathbf{x})$ of a vector \mathbf{x} is the number of coordinates where the vector is nonzero.

Proposition

The Hamming distance function is a metric. That is, for all vectors ${\bf u}, {\bf v}$ and ${\bf w}:$

2
$$d(\mathbf{u}, \mathbf{v}) = 0$$
 if and only if $\mathbf{u} = \mathbf{v}$.

Definition

The Hamming distance $d(\mathbf{x}, \mathbf{y})$ between two vectors \mathbf{x} and \mathbf{y} in \mathbb{F}_q^n is defined as the number of coordinates where the vectors differ. The Hamming weight $wt(\mathbf{x})$ of a vector \mathbf{x} is the number of coordinates where the vector is nonzero.

Proposition

The Hamming distance function is a metric. That is, for all vectors ${\bf u}, {\bf v}$ and ${\bf w}:$

$$(\mathbf{u}, \mathbf{v}) \ge 0.$$

2
$$d(\mathbf{u}, \mathbf{v}) = 0$$
 if and only if $\mathbf{u} = \mathbf{v}$.

$$d(\mathbf{u},\mathbf{v}) = d(\mathbf{v},\mathbf{u}).$$

Definition

The Hamming distance $d(\mathbf{x}, \mathbf{y})$ between two vectors \mathbf{x} and \mathbf{y} in \mathbb{F}_q^n is defined as the number of coordinates where the vectors differ. The Hamming weight $wt(\mathbf{x})$ of a vector \mathbf{x} is the number of coordinates where the vector is nonzero.

Proposition

The Hamming distance function is a metric. That is, for all vectors ${\bf u}, {\bf v}$ and ${\bf w}:$

2
$$d(\mathbf{u}, \mathbf{v}) = 0$$
 if and only if $\mathbf{u} = \mathbf{v}$

$$d(\mathbf{u},\mathbf{v}) = d(\mathbf{v},\mathbf{u}).$$

$$d(\mathbf{u},\mathbf{w}) \leqslant d(\mathbf{u},\mathbf{v}) + d(\mathbf{v},\mathbf{w}).$$

If C is a linear code, then the minimum distance d_C of C is defined as

$$d_{\mathcal{C}} = \min(d(\mathbf{x}, \mathbf{y}) | \mathbf{x}, \mathbf{y} \in \mathcal{C}, \mathbf{x} \neq \mathbf{y}) = \min(wt(\mathbf{x}) | \mathbf{x} \in \mathcal{C}, \mathbf{x} \neq \mathbf{0})$$

If C is a linear code, then the minimum distance d_C of C is defined as

$$d_{\mathcal{C}} = \min(d(\mathbf{x}, \mathbf{y}) | \mathbf{x}, \mathbf{y} \in \mathcal{C}, \mathbf{x} \neq \mathbf{y}) = \min(wt(\mathbf{x}) | \mathbf{x} \in \mathcal{C}, \mathbf{x} \neq \mathbf{0})$$

Definition

A code *C* is said to be *t*-error correcting if for every vector $\mathbf{x} \in \mathbb{F}_q^n$, there is at most one codeword $c \in C$ within distance *t* of \mathbf{x} , that is, with $d(\mathbf{x}, \mathbf{c}) \leq t$.

If C is a linear code, then the minimum distance d_C of C is defined as

$$d_{\mathcal{C}} = \min(d(\mathbf{x}, \mathbf{y}) | \mathbf{x}, \mathbf{y} \in \mathcal{C}, \mathbf{x} \neq \mathbf{y}) = \min(wt(\mathbf{x}) | \mathbf{x} \in \mathcal{C}, \mathbf{x} \neq \mathbf{0})$$

Definition

A code *C* is said to be *t*-error correcting if for every vector $\mathbf{x} \in \mathbb{F}_q^n$, there is at most one codeword $c \in C$ within distance *t* of \mathbf{x} , that is, with $d(\mathbf{x}, \mathbf{c}) \leq t$.

Theorem 6

Let C be a code.

• C can correct t errors iff
$$d_C \ge 2t + 1$$
.

If C is a linear code, then the minimum distance d_C of C is defined as

$$d_{\mathcal{C}} = \min(d(\mathbf{x}, \mathbf{y}) | \mathbf{x}, \mathbf{y} \in \mathcal{C}, \mathbf{x} \neq \mathbf{y}) = \min(wt(\mathbf{x}) | \mathbf{x} \in \mathcal{C}, \mathbf{x} \neq \mathbf{0})$$

Definition

A code *C* is said to be *t*-error correcting if for every vector $\mathbf{x} \in \mathbb{F}_q^n$, there is at most one codeword $c \in C$ within distance *t* of \mathbf{x} , that is, with $d(\mathbf{x}, \mathbf{c}) \leq t$.

Theorem 6

Let C be a code.

- C can correct t errors iff $d_C \ge 2t + 1$.
- **2** *C* can detect *s* errors iff $d_C \ge s + 1$.