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Finite fields Definitions

Definitions

A field (F,+,·) is a set F , together with two binary operations on
F × F denoted by + (addition) and · (multiplication) such that:

1) (F ,+) forms an Abelian group under addition. The neutral element is
denoted by 0.

2) (F\{0}, ·) forms an Abelian group under multiplication. The neutral
element is denoted by 1.

3) The multiplication operation is distributive over the addition.

Observation

A field does not contain any divizors of zero, that is, for any a, b ∈ F,
ab = 0 implies either a = 0 or b = 0. This property is extremely important
in solving systems of linear equations.
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Finite fields Definitions

More intuitively, a field is an algebraic structure in which the
operations of addition, subtraction, multiplication and division
(except division by zero) may be performed, and the familiar rules of
ordinary arithmetic hold.

A finite field is a field in which F has a finitely many elements.

A subset K of a field F that is itself a field under the operations of F
is called a subfield.

Observation

If K is a subfield of a finite field Fp, p prime, then K must contain the
elements 0 and 1, and so all other elements of Fp by the closure of K
under addition. Then F does not contain any proper subfield. We are led
to the following concept.
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Finite fields Further definitions

Further definitions

A field containing no proper subfields is called a prime field.

The intersection of any nonempty collection of subfields of a given
field F is again a subfield. The intersection of all subfields of F is
called the prime subfield of F.

The characteristic of a field F is the smallest integer n such that
1 + 1 + · · ·+ 1(n times ) = 0.
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Finite fields Examples

Examples

The complex numbers C, under the usual operations of addition and
multiplication.

The rational numbers Q = {a/b with a, b ∈ Z, b 6= 0} where Z is the
set of integers. The field of rational numbers is a subfield of C
containing no proper subfields.

For a given field F, the set F(X ) of rational functions in the variable
X with coefficients in F is a field.

The set Zp of integers modulo p, where p is prime. This is a finite
field with p elements, usually denoted by Fp.

Taking p = 2, we obtain the smallest field, F2, which has only two
elements: 0 and 1. This field has important uses in computer science,
especially in cryptography and coding theory.
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Finite fields The structure of finite fields

The structure of finite fields

Lemma 1

If the characteristic of a field is nonzero, then the characteristic is prime.
The characteristic of a finite field is always prime.

Proof.

Suppose the characteristic n of a field F factors as n1n2, with
1 < n1, n2 < n; thus n1n2 · 1 = 0.

Since there are no divisors of zero in F, either n1 · 1 or n2 · 1 is zero.

It follows that either (n1 · 1)a = n1a = 0 or (n2 · 1)a = n2a = 0 for all a ∈ F,
in contradiction to the definition of the characteristic n, hence the
characteristic is zero or prime.

Observation: The field of rational numbers, real numbers and complex
numbers all have characteristic zero.
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Finite fields The structure of finite fields

Lemma 2

Let F be a finite field containing a subfield K with q elements. Then F is
a vector space over K and |F| = qm, where m is the dimension of F viwed
as a vector space over K.

Proof.

It is straightforward to verify that F is a vector space over K.

Let B = {β1, β2, . . . , βm} be a basis for F over K.

Every α ∈ F can be written uniquely as α = a1β1 + · · ·+ amβm, where
ai ∈ K and the sequence a1, a2, . . . , am is uniquely determined by α.

There are |K|m = qm distinct sequences of coefficients, because there are
|K| = q choices for each ai .

The m occuring in Lemma 2, which is the dimension of F as a vector
space over K, is called the degree of F over K.
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Finite fields The structure of finite fields

Theorem 1

The prime subfield of a finite field F is isomorphic to Fp, where p is the
characteristic of F.

Theorem 2

Let F be a finite field. The cardinality of F is pm, where the prime p is the
characteristic of F and m is the degree of F over its prime subfield.

Proof. (of Theorem 2).

Since F is finite, its characteristic is prime (according to Lemma 1). Therefore the

prime subfield K of F is isomorphic to Fp, by Theorem 1. By Lemma 2, the

cardinality of F is just |K |m = pm.
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Finite fields The structure of finite fields

Theorem 3 (Existence of finite fields)

For every prime p and positive integer n > 1 there is a finite field with pn

elements. Any two finite fields with pn elements are isomorphic.

The previous theorem shows that a finite field of a given order is
unique up to field isomorphism.

Thus one speaks of “the” finite field of a particular order q. It is
usually denoted by GF (q), where G stands for Galois (Evariste Galois,
1811-1832) and F for field.

Vlad Gheorghiu (CMU) Finite fields: An introduction July 2, 2008 10 / 20



Finite fields The structure of finite fields

Theorem 3 (Existence of finite fields)

For every prime p and positive integer n > 1 there is a finite field with pn

elements. Any two finite fields with pn elements are isomorphic.

The previous theorem shows that a finite field of a given order is
unique up to field isomorphism.

Thus one speaks of “the” finite field of a particular order q. It is
usually denoted by GF (q), where G stands for Galois (Evariste Galois,
1811-1832) and F for field.

Vlad Gheorghiu (CMU) Finite fields: An introduction July 2, 2008 10 / 20



Finite fields The structure of finite fields

Theorem 3 (Existence of finite fields)

For every prime p and positive integer n > 1 there is a finite field with pn

elements. Any two finite fields with pn elements are isomorphic.

The previous theorem shows that a finite field of a given order is
unique up to field isomorphism.

Thus one speaks of “the” finite field of a particular order q. It is
usually denoted by GF (q), where G stands for Galois (Evariste Galois,
1811-1832) and F for field.

Vlad Gheorghiu (CMU) Finite fields: An introduction July 2, 2008 10 / 20



Finite fields The structure of finite fields

Theorem 4 (Subfield structure)

Let F be a finite field with pn elements. Every subfield of F has pm

elements for some integer m dividing n. Conversely, for any integer m
dividing n there is a unique subfield of F of order pm.

Proof.

A subfield of the finite field GF (pn) must have pm distinct elements
for some positive integer m with m 6 n.

By Lemma 2, pn must be a power of pm, so m must divide n.

Theorem 5 (Multiplicative group structure)

For every finite field F, the multiplicative group (F\{0}, ·) is cyclic.
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Classical codes over finite fields Introduction

Introduction

In practice, all communication channels are noisy.

One of the main problems in algebraic coding theory is to make the
errors, which occur for instance because of noisy channels, extremely
improbable.

A basic idea is to transmit redundant information together with the
original message one wants to communicate.

In common applications, a message is considered to be a fixed finite
word on a fixed finite alphabet.
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Classical codes over finite fields Introduction

A code is an injection from a set of messages to a set of words on a
fixed finite alphabet. The words in the range of this function are
called codewords.

One requires a code to be injective so that one can decode the
sequence that is receive.

Main goal: detect and correct the errors.

Usually the detection of errors is accomplished by noticing that the
received sequence is not a codeword.
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Classical codes over finite fields Introduction

For some codes, it is possible for the receiver to determine, with high
probability, the intended message when the received sequence is not a
codeword.

Such codes are called error-correcting codes.

Error-correcting codes are often called algebraic codes because they
are usually constructed using some algebraic system, very often a
finite field.
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Classical codes over finite fields Linear codes: basic properties

Linear codes: basic properties

Definition

Let Fn
q denote the set of all n-tuples over a finite field Fq:

Fn
q = {(a1, . . . , an) |ai ∈ F, i = 1, . . . , n}.

Fn
q is a vector space over the field Fq, of dimension n.

The messages are assumed to be elements of Fk
q for some k > 1.

There are qk distinct messages that can be sent.

The codewords are assumed to be elements of Fn
q for some n > k .
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Classical codes over finite fields Linear codes: basic properties

A code is an injective function from Fk
q to Fn

q. The codewords are the
range of this function.

We are particularly interested in those codes for which the range is a
subspace of Fn

q, for then we can use results of linear algebra to
analyze the code.

Definition

A linear code C is a subspace of the vector space Fn
q. Such a code is called

a q-ary code; the code is binary if q = 2 and ternary if q = 3. The
number n is the length of the code.
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Classical codes over finite fields Linear codes: basic properties

Since a linear code C is a subspace of Fn
q, it will contain qk distinct

codewords for some k with 0 6 k 6 n. The integer k is called the
dimension of the linear code C .

One can also regard k as the length of each uncoded message, for our
messages will be elements from the set Fk

q . We denote such a code C
as an [n,k] linear code.

Example 1: the q-ary repetition code which acts by repeating the
message a ∈ Fq that is to be encoded a total of n times: a→ a . . . a.
This is an [n, 1] linear code.

Example 2: The binary parity − check code over F2:
(a1, . . . , an)→ (a1, . . . , an,

∑n
i=1 ai ). This is an [n, n − 1] linear code,

but with no error-correcting ability.
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Classical codes over finite fields Encoding methods

Encoding methods

There are two well known matrix encoding techniques: the
parity-check matrix and the generator matrix.

Parity chech matrix

Let H be a (n − k)× n matrix over Fq of rank n − k . Then
C = {c ∈ Fn

q |HcT = 0} is a linear [n, k] code.

Generator matrix

Let G be a k × n matrix over Fq. The set C = {aG |a ∈ Fk
q} is a linear

code, of dimension k equal to the rank of G .
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Classical codes over finite fields Hamming distance as a metric

Hamming distance as a metric

Definition

The Hamming distance d(x, y) between two vectors x and y in Fn
q is

defined as the number of coordinates where the vectors differ. The
Hamming weight wt(x) of a vector x is the number of coordinates where
the vector is nonzero.

Proposition

The Hamming distance function is a metric. That is, for all vectors u, v
and w:

1 d(u, v) > 0.

2 d(u, v) = 0 if and only if u = v.

3 d(u, v) = d(v,u).

4 d(u,w) 6 d(u, v) + d(v,w).
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Classical codes over finite fields Hamming distance as a metric

Definition

If C is a linear code, then the minimum distance dC of C is defined as

dC = min(d(x, y)|x, y ∈ C , x 6= y) = min(wt(x)|x ∈ C , x 6= 0)

Definition

A code C is said to be t-error correcting if for every vector x ∈ Fn
q, there is

at most one codeword c ∈ C within distance t of x, that is, with
d(x, c) 6 t.

Theorem 6

Let C be a code.

1 C can correct t errors iff dC > 2t + 1.

2 C can detect s errors iff dC > s + 1.
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