Finite fields: An introduction

Vlad Gheorghiu

Department of Physics
Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A.

$$
\text { July 2, } 2008
$$

(1) Finite fields

- Definitions
- Further definitions
- Examples
- The structure of finite fields
(2) Classical codes over finite fields
- Introduction
- Linear codes: basic properties
- Encoding methods
- Hamming distance as a metric
- A field $(\mathrm{F},+, \cdot)$ is a set F, together with two binary operations on $F \times F$ denoted by + (addition) and \cdot (multiplication) such that:
- A field $(\mathrm{F},+, \cdot)$ is a set F, together with two binary operations on $F \times F$ denoted by + (addition) and \cdot (multiplication) such that:

1) $(F,+)$ forms an Abelian group under addition. The neutral element is denoted by 0 .

Definitions

- A field $(\mathrm{F},+, \cdot)$ is a set F, together with two binary operations on $F \times F$ denoted by + (addition) and \cdot (multiplication) such that:

1) $(F,+)$ forms an Abelian group under addition. The neutral element is denoted by 0 .
2) ($F \backslash\{0\}, \cdot)$ forms an Abelian group under multiplication. The neutral element is denoted by 1 .

Definitions

- A field $(\mathrm{F},+, \cdot)$ is a set F, together with two binary operations on $F \times F$ denoted by + (addition) and \cdot (multiplication) such that:

1) $(F,+)$ forms an Abelian group under addition. The neutral element is denoted by 0 .
2) ($F \backslash\{0\}, \cdot)$ forms an Abelian group under multiplication. The neutral element is denoted by 1 .
3) The multiplication operation is distributive over the addition.

Definitions

- A field $(F,+, \cdot)$ is a set F, together with two binary operations on $F \times F$ denoted by + (addition) and \cdot (multiplication) such that:

1) $(F,+)$ forms an Abelian group under addition. The neutral element is denoted by 0 .
2) ($F \backslash\{0\}, \cdot)$ forms an Abelian group under multiplication. The neutral element is denoted by 1 .
3) The multiplication operation is distributive over the addition.

Observation

A field does not contain any divizors of zero, that is, for any $a, b \in \mathbb{F}$, $a b=0$ implies either $a=0$ or $b=0$. This property is extremely important in solving systems of linear equations.

- More intuitively, a field is an algebraic structure in which the operations of addition, subtraction, multiplication and division (except division by zero) may be performed, and the familiar rules of ordinary arithmetic hold.
- More intuitively, a field is an algebraic structure in which the operations of addition, subtraction, multiplication and division (except division by zero) may be performed, and the familiar rules of ordinary arithmetic hold.
- A finite field is a field in which F has a finitely many elements.
- More intuitively, a field is an algebraic structure in which the operations of addition, subtraction, multiplication and division (except division by zero) may be performed, and the familiar rules of ordinary arithmetic hold.
- A finite field is a field in which F has a finitely many elements.
- A subset \mathbb{K} of a field \mathbb{F} that is itself a field under the operations of \mathbb{F} is called a subfield.
- More intuitively, a field is an algebraic structure in which the operations of addition, subtraction, multiplication and division (except division by zero) may be performed, and the familiar rules of ordinary arithmetic hold.
- A finite field is a field in which F has a finitely many elements.
- A subset \mathbb{K} of a field \mathbb{F} that is itself a field under the operations of \mathbb{F} is called a subfield.

Observation

If \mathbb{K} is a subfield of a finite field \mathbb{F}_{p}, p prime, then \mathbb{K} must contain the elements 0 and 1 , and so all other elements of \mathbb{F}_{p} by the closure of \mathbb{K} under addition. Then \mathbb{F} does not contain any proper subfield. We are led to the following concept.

Further definitions

- A field containing no proper subfields is called a prime field.

Further definitions

- A field containing no proper subfields is called a prime field.
- The intersection of any nonempty collection of subfields of a given field \mathbb{F} is again a subfield. The intersection of all subfields of \mathbb{F} is called the prime subfield of \mathbb{F}.

Further definitions

- A field containing no proper subfields is called a prime field.
- The intersection of any nonempty collection of subfields of a given field \mathbb{F} is again a subfield. The intersection of all subfields of \mathbb{F} is called the prime subfield of \mathbb{F}.
- The characteristic of a field \mathbb{F} is the smallest integer n such that $1+1+\cdots+1(n$ times $)=0$.

Examples

- The complex numbers \mathbb{C}, under the usual operations of addition and multiplication.

Examples

- The complex numbers \mathbb{C}, under the usual operations of addition and multiplication.
- The rational numbers $\mathbb{Q}=\{a / b$ with $a, b \in \mathbb{Z}, b \neq 0\}$ where \mathbb{Z} is the set of integers. The field of rational numbers is a subfield of \mathbb{C} containing no proper subfields.

Examples

- The complex numbers \mathbb{C}, under the usual operations of addition and multiplication.
- The rational numbers $\mathbb{Q}=\{a / b$ with $a, b \in \mathbb{Z}, b \neq 0\}$ where \mathbb{Z} is the set of integers. The field of rational numbers is a subfield of \mathbb{C} containing no proper subfields.
- For a given field \mathbb{F}, the set $\mathbb{F}(X)$ of rational functions in the variable X with coefficients in \mathbb{F} is a field.

Examples

- The complex numbers \mathbb{C}, under the usual operations of addition and multiplication.
- The rational numbers $\mathbb{Q}=\{a / b$ with $a, b \in \mathbb{Z}, b \neq 0\}$ where \mathbb{Z} is the set of integers. The field of rational numbers is a subfield of \mathbb{C} containing no proper subfields.
- For a given field \mathbb{F}, the set $\mathbb{F}(X)$ of rational functions in the variable X with coefficients in \mathbb{F} is a field.
- The set \mathbb{Z}_{p} of integers modulo p, where p is prime. This is a finite field with p elements, usually denoted by \mathbb{F}_{p}.

Examples

- The complex numbers \mathbb{C}, under the usual operations of addition and multiplication.
- The rational numbers $\mathbb{Q}=\{a / b$ with $a, b \in \mathbb{Z}, b \neq 0\}$ where \mathbb{Z} is the set of integers. The field of rational numbers is a subfield of \mathbb{C} containing no proper subfields.
- For a given field \mathbb{F}, the set $\mathbb{F}(X)$ of rational functions in the variable X with coefficients in \mathbb{F} is a field.
- The set \mathbb{Z}_{p} of integers modulo p, where p is prime. This is a finite field with p elements, usually denoted by \mathbb{F}_{p}.
- Taking $p=2$, we obtain the smallest field, \mathbb{F}_{2}, which has only two elements: 0 and 1 . This field has important uses in computer science, especially in cryptography and coding theory.

The structure of finite fields

Lemma 1

If the characteristic of a field is nonzero, then the characteristic is prime. The characteristic of a finite field is always prime.

The structure of finite fields

Lemma 1

If the characteristic of a field is nonzero, then the characteristic is prime. The characteristic of a finite field is always prime.

Proof.

The structure of finite fields

Lemma 1

If the characteristic of a field is nonzero, then the characteristic is prime. The characteristic of a finite field is always prime.

Proof.

- Suppose the characteristic n of a field \mathbb{F} factors as $n_{1} n_{2}$, with $1<n_{1}, n_{2}<n$; thus $n_{1} n_{2} \cdot 1=0$.

The structure of finite fields

Lemma 1

If the characteristic of a field is nonzero, then the characteristic is prime. The characteristic of a finite field is always prime.

Proof.

- Suppose the characteristic n of a field \mathbb{F} factors as $n_{1} n_{2}$, with $1<n_{1}, n_{2}<n$; thus $n_{1} n_{2} \cdot 1=0$.
- Since there are no divisors of zero in \mathbb{F}, either $n_{1} \cdot 1$ or $n_{2} \cdot 1$ is zero.

The structure of finite fields

Lemma 1

If the characteristic of a field is nonzero, then the characteristic is prime. The characteristic of a finite field is always prime.

Proof.

- Suppose the characteristic n of a field \mathbb{F} factors as $n_{1} n_{2}$, with $1<n_{1}, n_{2}<n$; thus $n_{1} n_{2} \cdot 1=0$.
- Since there are no divisors of zero in \mathbb{F}, either $n_{1} \cdot 1$ or $n_{2} \cdot 1$ is zero.
- It follows that either $\left(n_{1} \cdot 1\right) a=n_{1} a=0$ or $\left(n_{2} \cdot 1\right) a=n_{2} a=0$ for all $a \in \mathbb{F}$, in contradiction to the definition of the characteristic n, hence the characteristic is zero or prime.

The structure of finite fields

Lemma 1

If the characteristic of a field is nonzero, then the characteristic is prime. The characteristic of a finite field is always prime.

Proof.

- Suppose the characteristic n of a field \mathbb{F} factors as $n_{1} n_{2}$, with $1<n_{1}, n_{2}<n$; thus $n_{1} n_{2} \cdot 1=0$.
- Since there are no divisors of zero in \mathbb{F}, either $n_{1} \cdot 1$ or $n_{2} \cdot 1$ is zero.
- It follows that either $\left(n_{1} \cdot 1\right) a=n_{1} a=0$ or $\left(n_{2} \cdot 1\right) a=n_{2} a=0$ for all $a \in \mathbb{F}$, in contradiction to the definition of the characteristic n, hence the characteristic is zero or prime.

Observation: The field of rational numbers, real numbers and complex numbers all have characteristic zero.

Lemma 2

Let \mathbb{F} be a finite field containing a subfield \mathbb{K} with q elements. Then \mathbb{F} is a vector space over \mathbb{K} and $|\mathbb{F}|=q^{m}$, where m is the dimension of \mathbb{F} viwed as a vector space over \mathbb{K}.

Lemma 2

Let \mathbb{F} be a finite field containing a subfield \mathbb{K} with q elements. Then \mathbb{F} is a vector space over \mathbb{K} and $|\mathbb{F}|=q^{m}$, where m is the dimension of \mathbb{F} viwed as a vector space over \mathbb{K}.

Proof.

Lemma 2

Let \mathbb{F} be a finite field containing a subfield \mathbb{K} with q elements. Then \mathbb{F} is a vector space over \mathbb{K} and $|\mathbb{F}|=q^{m}$, where m is the dimension of \mathbb{F} viwed as a vector space over \mathbb{K}.

Proof.

- It is straightforward to verify that \mathbb{F} is a vector space over \mathbb{K}.

Lemma 2

Let \mathbb{F} be a finite field containing a subfield \mathbb{K} with q elements. Then \mathbb{F} is a vector space over \mathbb{K} and $|\mathbb{F}|=q^{m}$, where m is the dimension of \mathbb{F} viwed as a vector space over \mathbb{K}.

Proof.

- It is straightforward to verify that \mathbb{F} is a vector space over \mathbb{K}.
- Let $\mathcal{B}=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right\}$ be a basis for \mathbb{F} over \mathbb{K}.

Lemma 2

Let \mathbb{F} be a finite field containing a subfield \mathbb{K} with q elements. Then \mathbb{F} is a vector space over \mathbb{K} and $|\mathbb{F}|=q^{m}$, where m is the dimension of \mathbb{F} viwed as a vector space over \mathbb{K}.

Proof.

- It is straightforward to verify that \mathbb{F} is a vector space over \mathbb{K}.
- Let $\mathcal{B}=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right\}$ be a basis for \mathbb{F} over \mathbb{K}.
- Every $\alpha \in \mathbb{F}$ can be written uniquely as $\alpha=a_{1} \beta_{1}+\cdots+a_{m} \beta_{m}$, where $a_{i} \in \mathbb{K}$ and the sequence $a_{1}, a_{2}, \ldots, a_{m}$ is uniquely determined by α.

Lemma 2

Let \mathbb{F} be a finite field containing a subfield \mathbb{K} with q elements. Then \mathbb{F} is a vector space over \mathbb{K} and $|\mathbb{F}|=q^{m}$, where m is the dimension of \mathbb{F} viwed as a vector space over \mathbb{K}.

Proof.

- It is straightforward to verify that \mathbb{F} is a vector space over \mathbb{K}.
- Let $\mathcal{B}=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right\}$ be a basis for \mathbb{F} over \mathbb{K}.
- Every $\alpha \in \mathbb{F}$ can be written uniquely as $\alpha=a_{1} \beta_{1}+\cdots+a_{m} \beta_{m}$, where $a_{i} \in \mathbb{K}$ and the sequence $a_{1}, a_{2}, \ldots, a_{m}$ is uniquely determined by α.
- There are $|\mathbb{K}|^{m}=q^{m}$ distinct sequences of coefficients, because there are $|\mathbb{K}|=q$ choices for each a_{i}.

Lemma 2

Let \mathbb{F} be a finite field containing a subfield \mathbb{K} with q elements. Then \mathbb{F} is a vector space over \mathbb{K} and $|\mathbb{F}|=q^{m}$, where m is the dimension of \mathbb{F} viwed as a vector space over \mathbb{K}.

Proof.

- It is straightforward to verify that \mathbb{F} is a vector space over \mathbb{K}.
- Let $\mathcal{B}=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right\}$ be a basis for \mathbb{F} over \mathbb{K}.
- Every $\alpha \in \mathbb{F}$ can be written uniquely as $\alpha=a_{1} \beta_{1}+\cdots+a_{m} \beta_{m}$, where $a_{i} \in \mathbb{K}$ and the sequence $a_{1}, a_{2}, \ldots, a_{m}$ is uniquely determined by α.
- There are $|\mathbb{K}|^{m}=q^{m}$ distinct sequences of coefficients, because there are $|\mathbb{K}|=q$ choices for each a_{i}.

The m occuring in Lemma 2, which is the dimension of \mathbb{F} as a vector space over \mathbb{K}, is called the degree of \mathbb{F} over \mathbb{K}.

Theorem 1

The prime subfield of a finite field \mathbb{F} is isomorphic to \mathbb{F}_{p}, where p is the characteristic of \mathbb{F}.

Theorem 1

The prime subfield of a finite field \mathbb{F} is isomorphic to \mathbb{F}_{p}, where p is the characteristic of \mathbb{F}.

Theorem 2

Let \mathbb{F} be a finite field. The cardinality of \mathbb{F} is p^{m}, where the prime p is the characteristic of F and m is the degree of F over its prime subfield.

Theorem 1

The prime subfield of a finite field \mathbb{F} is isomorphic to \mathbb{F}_{p}, where p is the characteristic of \mathbb{F}.

Theorem 2

Let \mathbb{F} be a finite field. The cardinality of \mathbb{F} is p^{m}, where the prime p is the characteristic of F and m is the degree of F over its prime subfield.

Proof. (of Theorem 2).

Since \mathbb{F} is finite, its characteristic is prime (according to Lemma 1). Therefore the prime subfield \mathbb{K} of \mathbb{F} is isomorphic to \mathbb{F}_{p}, by Theorem 1 . By Lemma 2, the cardinality of \mathbb{F} is just $|K|^{m}=p^{m}$.

Theorem 3 (Existence of finite fields)

For every prime p and positive integer $n \geqslant 1$ there is a finite field with p^{n} elements. Any two finite fields with p^{n} elements are isomorphic.

Theorem 3 (Existence of finite fields)

For every prime p and positive integer $n \geqslant 1$ there is a finite field with p^{n} elements. Any two finite fields with p^{n} elements are isomorphic.

- The previous theorem shows that a finite field of a given order is unique up to field isomorphism.

Theorem 3 (Existence of finite fields)

For every prime p and positive integer $n \geqslant 1$ there is a finite field with p^{n} elements. Any two finite fields with p^{n} elements are isomorphic.

- The previous theorem shows that a finite field of a given order is unique up to field isomorphism.
- Thus one speaks of "the" finite field of a particular order q. It is usually denoted by $G F(q)$, where G stands for Galois (Evariste Galois, 1811-1832) and F for field.

Theorem 4 (Subfield structure)

Let \mathbb{F} be a finite field with p^{n} elements. Every subfield of \mathbb{F} has p^{m} elements for some integer m dividing n. Conversely, for any integer m dividing n there is a unique subfield of \mathbb{F} of order p^{m}.

Theorem 4 (Subfield structure)

Let \mathbb{F} be a finite field with p^{n} elements. Every subfield of \mathbb{F} has p^{m} elements for some integer m dividing n. Conversely, for any integer m dividing n there is a unique subfield of \mathbb{F} of order p^{m}.

Proof.

- A subfield of the finite field $G F\left(p^{n}\right)$ must have p^{m} distinct elements for some positive integer m with $m \leqslant n$.

Theorem 4 (Subfield structure)

Let \mathbb{F} be a finite field with p^{n} elements. Every subfield of \mathbb{F} has p^{m} elements for some integer m dividing n. Conversely, for any integer m dividing n there is a unique subfield of \mathbb{F} of order p^{m}.

Proof.

- A subfield of the finite field $G F\left(p^{n}\right)$ must have p^{m} distinct elements for some positive integer m with $m \leqslant n$.
- By Lemma 2, p^{n} must be a power of p^{m}, so m must divide n.

Theorem 4 (Subfield structure)

Let \mathbb{F} be a finite field with p^{n} elements. Every subfield of \mathbb{F} has p^{m} elements for some integer m dividing n. Conversely, for any integer m dividing n there is a unique subfield of \mathbb{F} of order p^{m}.

Proof.

- A subfield of the finite field $G F\left(p^{n}\right)$ must have p^{m} distinct elements for some positive integer m with $m \leqslant n$.
- By Lemma 2, p^{n} must be a power of p^{m}, so m must divide n.

Theorem 5 (Multiplicative group structure)

For every finite field \mathbb{F}, the multiplicative group $(F \backslash\{0\}, \cdot)$ is cyclic.

Introduction

- In practice, all communication channels are noisy.

Introduction

- In practice, all communication channels are noisy.
- One of the main problems in algebraic coding theory is to make the errors, which occur for instance because of noisy channels, extremely improbable.

Introduction

- In practice, all communication channels are noisy.
- One of the main problems in algebraic coding theory is to make the errors, which occur for instance because of noisy channels, extremely improbable.
- A basic idea is to transmit redundant information together with the original message one wants to communicate.

Introduction

- In practice, all communication channels are noisy.
- One of the main problems in algebraic coding theory is to make the errors, which occur for instance because of noisy channels, extremely improbable.
- A basic idea is to transmit redundant information together with the original message one wants to communicate.
- In common applications, a message is considered to be a fixed finite word on a fixed finite alphabet.
- A code is an injection from a set of messages to a set of words on a fixed finite alphabet. The words in the range of this function are called codewords.
- A code is an injection from a set of messages to a set of words on a fixed finite alphabet. The words in the range of this function are called codewords.
- One requires a code to be injective so that one can decode the sequence that is receive.
- A code is an injection from a set of messages to a set of words on a fixed finite alphabet. The words in the range of this function are called codewords.
- One requires a code to be injective so that one can decode the sequence that is receive.
- Main goal: detect and correct the errors.
- A code is an injection from a set of messages to a set of words on a fixed finite alphabet. The words in the range of this function are called codewords.
- One requires a code to be injective so that one can decode the sequence that is receive.
- Main goal: detect and correct the errors.
- Usually the detection of errors is accomplished by noticing that the received sequence is not a codeword.
- For some codes, it is possible for the receiver to determine, with high probability, the intended message when the received sequence is not a codeword.
- For some codes, it is possible for the receiver to determine, with high probability, the intended message when the received sequence is not a codeword.
- Such codes are called error-correcting codes.
- For some codes, it is possible for the receiver to determine, with high probability, the intended message when the received sequence is not a codeword.
- Such codes are called error-correcting codes.
- Error-correcting codes are often called algebraic codes because they are usually constructed using some algebraic system, very often a finite field.

Linear codes: basic properties

Definition

Let \mathbb{F}_{q}^{n} denote the set of all n-tuples over a finite field \mathbb{F}_{q} :

$$
\mathbb{F}_{q}^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in \mathbb{F}, i=1, \ldots, n\right\}
$$

Linear codes: basic properties

Definition

Let \mathbb{F}_{q}^{n} denote the set of all n-tuples over a finite field \mathbb{F}_{q} :

$$
\mathbb{F}_{q}^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in \mathbb{F}, i=1, \ldots, n\right\}
$$

- \mathbb{F}_{q}^{n} is a vector space over the field \mathbb{F}_{q}, of dimension n.

Linear codes: basic properties

Definition

Let \mathbb{F}_{q}^{n} denote the set of all n-tuples over a finite field \mathbb{F}_{q} :

$$
\mathbb{F}_{q}^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in \mathbb{F}, i=1, \ldots, n\right\}
$$

- \mathbb{F}_{q}^{n} is a vector space over the field \mathbb{F}_{q}, of dimension n.
- The messages are assumed to be elements of \mathbb{F}_{q}^{k} for some $k \geqslant 1$.

Linear codes: basic properties

Definition

Let \mathbb{F}_{q}^{n} denote the set of all n-tuples over a finite field \mathbb{F}_{q} :

$$
\mathbb{F}_{q}^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in \mathbb{F}, i=1, \ldots, n\right\}
$$

- \mathbb{F}_{q}^{n} is a vector space over the field \mathbb{F}_{q}, of dimension n.
- The messages are assumed to be elements of \mathbb{F}_{q}^{k} for some $k \geqslant 1$.
- There are q^{k} distinct messages that can be sent.

Linear codes: basic properties

Definition

Let \mathbb{F}_{q}^{n} denote the set of all n-tuples over a finite field \mathbb{F}_{q} :

$$
\mathbb{F}_{q}^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in \mathbb{F}, i=1, \ldots, n\right\}
$$

- \mathbb{F}_{q}^{n} is a vector space over the field \mathbb{F}_{q}, of dimension n.
- The messages are assumed to be elements of \mathbb{F}_{q}^{k} for some $k \geqslant 1$.
- There are q^{k} distinct messages that can be sent.
- The codewords are assumed to be elements of \mathbb{F}_{q}^{n} for some $n \geqslant k$.
- A code is an injective function from \mathbb{F}_{q}^{k} to \mathbb{F}_{q}^{n}. The codewords are the range of this function.
- A code is an injective function from \mathbb{F}_{q}^{k} to \mathbb{F}_{q}^{n}. The codewords are the range of this function.
- We are particularly interested in those codes for which the range is a subspace of \mathbb{F}_{q}^{n}, for then we can use results of linear algebra to analyze the code.
- A code is an injective function from \mathbb{F}_{q}^{k} to \mathbb{F}_{q}^{n}. The codewords are the range of this function.
- We are particularly interested in those codes for which the range is a subspace of \mathbb{F}_{q}^{n}, for then we can use results of linear algebra to analyze the code.

Definition

A linear code C is a subspace of the vector space \mathbb{F}_{q}^{n}. Such a code is called a q-ary code; the code is binary if $q=2$ and ternary if $q=3$. The number n is the length of the code.

- Since a linear code C is a subspace of \mathbb{F}_{q}^{n}, it will contain q^{k} distinct codewords for some k with $0 \leqslant k \leqslant n$. The integer k is called the dimension of the linear code C.
- Since a linear code C is a subspace of \mathbb{F}_{q}^{n}, it will contain q^{k} distinct codewords for some k with $0 \leqslant k \leqslant n$. The integer k is called the dimension of the linear code C.
- One can also regard k as the length of each uncoded message, for our messages will be elements from the set \mathbb{F}_{q}^{k}. We denote such a code C as an $[\mathrm{n}, \mathrm{k}]$ linear code.
- Since a linear code C is a subspace of \mathbb{F}_{q}^{n}, it will contain q^{k} distinct codewords for some k with $0 \leqslant k \leqslant n$. The integer k is called the dimension of the linear code C.
- One can also regard k as the length of each uncoded message, for our messages will be elements from the set \mathbb{F}_{q}^{k}. We denote such a code C as an [n, k] linear code.
- Example 1: the q-ary repetition code which acts by repeating the message $a \in \mathbb{F}_{q}$ that is to be encoded a total of n times: $a \rightarrow a \ldots a$. This is an $[n, 1]$ linear code.
- Since a linear code C is a subspace of \mathbb{F}_{q}^{n}, it will contain q^{k} distinct codewords for some k with $0 \leqslant k \leqslant n$. The integer k is called the dimension of the linear code C.
- One can also regard k as the length of each uncoded message, for our messages will be elements from the set \mathbb{F}_{q}^{k}. We denote such a code C as an [n, k] linear code.
- Example 1: the q-ary repetition code which acts by repeating the message $a \in \mathbb{F}_{q}$ that is to be encoded a total of n times: $a \rightarrow a \ldots a$. This is an $[n, 1]$ linear code.
- Example 2: The binary parity - check code over \mathbb{F}_{2} : $\left(a_{1}, \ldots, a_{n}\right) \rightarrow\left(a_{1}, \ldots, a_{n}, \sum_{i=1}^{n} a_{i}\right)$. This is an $[n, n-1]$ linear code, but with no error-correcting ability.

Encoding methods

- There are two well known matrix encoding techniques: the parity-check matrix and the generator matrix.

Encoding methods

- There are two well known matrix encoding techniques: the parity-check matrix and the generator matrix.

Parity chech matrix
Let H be a $(n-k) \times n$ matrix over \mathbb{F}_{q} of rank $n-k$. Then $C=\left\{\mathbf{c} \in \mathbb{F}_{q}^{n} \mid H \mathbf{c}^{T}=0\right\}$ is a linear $[n, k]$ code.

Encoding methods

- There are two well known matrix encoding techniques: the parity-check matrix and the generator matrix.

Parity chech matrix

Let H be a $(n-k) \times n$ matrix over \mathbb{F}_{q} of rank $n-k$. Then $C=\left\{\mathbf{c} \in \mathbb{F}_{q}^{n} \mid H \mathbf{c}^{T}=0\right\}$ is a linear $[n, k]$ code.

Generator matrix

Let G be a $k \times n$ matrix over \mathbb{F}_{q}. The set $C=\left\{\mathbf{a} G \mid \mathbf{a} \in \mathbb{F}_{q}^{k}\right\}$ is a linear code, of dimension k equal to the rank of G.

Hamming distance as a metric

Definition

The Hamming distance $d(\mathbf{x}, \mathbf{y})$ between two vectors \mathbf{x} and \mathbf{y} in \mathbb{F}_{q}^{n} is defined as the number of coordinates where the vectors differ. The Hamming weight $w t(\mathbf{x})$ of a vector \mathbf{x} is the number of coordinates where the vector is nonzero.

Hamming distance as a metric

Definition

The Hamming distance $d(\mathbf{x}, \mathbf{y})$ between two vectors \mathbf{x} and \mathbf{y} in \mathbb{F}_{q}^{n} is defined as the number of coordinates where the vectors differ. The Hamming weight $w t(\mathbf{x})$ of a vector \mathbf{x} is the number of coordinates where the vector is nonzero.

Proposition

The Hamming distance function is a metric. That is, for all vectors \mathbf{u}, \mathbf{v} and \mathbf{w} :
(1) $d(\mathbf{u}, \mathbf{v}) \geqslant 0$.

Hamming distance as a metric

Definition

The Hamming distance $d(\mathbf{x}, \mathbf{y})$ between two vectors \mathbf{x} and \mathbf{y} in \mathbb{F}_{q}^{n} is defined as the number of coordinates where the vectors differ. The Hamming weight $w t(\mathbf{x})$ of a vector \mathbf{x} is the number of coordinates where the vector is nonzero.

Proposition

The Hamming distance function is a metric. That is, for all vectors \mathbf{u}, \mathbf{v} and \mathbf{w} :
(1) $d(\mathbf{u}, \mathbf{v}) \geqslant 0$.
(2) $d(\mathbf{u}, \mathbf{v})=0$ if and only if $\mathbf{u}=\mathbf{v}$.

Hamming distance as a metric

Definition

The Hamming distance $d(\mathbf{x}, \mathbf{y})$ between two vectors \mathbf{x} and \mathbf{y} in \mathbb{F}_{q}^{n} is defined as the number of coordinates where the vectors differ. The Hamming weight $w t(\mathbf{x})$ of a vector \mathbf{x} is the number of coordinates where the vector is nonzero.

Proposition

The Hamming distance function is a metric. That is, for all vectors \mathbf{u}, \mathbf{v} and \mathbf{w} :
(1) $d(\mathbf{u}, \mathbf{v}) \geqslant 0$.
(2) $d(\mathbf{u}, \mathbf{v})=0$ if and only if $\mathbf{u}=\mathbf{v}$.
(3) $d(\mathbf{u}, \mathbf{v})=d(\mathbf{v}, \mathbf{u})$.

Hamming distance as a metric

Definition

The Hamming distance $d(\mathbf{x}, \mathbf{y})$ between two vectors \mathbf{x} and \mathbf{y} in \mathbb{F}_{q}^{n} is defined as the number of coordinates where the vectors differ. The Hamming weight $w t(\mathbf{x})$ of a vector \mathbf{x} is the number of coordinates where the vector is nonzero.

Proposition

The Hamming distance function is a metric. That is, for all vectors \mathbf{u}, \mathbf{v} and \mathbf{w} :
(1) $d(\mathbf{u}, \mathbf{v}) \geqslant 0$.
(2) $d(\mathbf{u}, \mathbf{v})=0$ if and only if $\mathbf{u}=\mathbf{v}$.
(3) $d(\mathbf{u}, \mathbf{v})=d(\mathbf{v}, \mathbf{u})$.
(9) $d(\mathbf{u}, \mathbf{w}) \leqslant d(\mathbf{u}, \mathbf{v})+d(\mathbf{v}, \mathbf{w})$.

Definition

If C is a linear code, then the minimum distance d_{C} of C is defined as

$$
d_{C}=\min (d(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}, \mathbf{y} \in C, \mathbf{x} \neq \mathbf{y})=\min (w t(\mathbf{x}) \mid \mathbf{x} \in C, \mathbf{x} \neq 0)
$$

Definition

If C is a linear code, then the minimum distance d_{C} of C is defined as

$$
d_{C}=\min (d(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}, \mathbf{y} \in C, \mathbf{x} \neq \mathbf{y})=\min (w t(\mathbf{x}) \mid \mathbf{x} \in C, \mathbf{x} \neq 0)
$$

Definition

A code C is said to be t-error correcting if for every vector $\mathbf{x} \in \mathbb{F}_{q}^{n}$, there is at most one codeword $c \in C$ within distance t of \mathbf{x}, that is, with $d(\mathbf{x}, \mathbf{c}) \leqslant t$.

Definition

If C is a linear code, then the minimum distance d_{C} of C is defined as

$$
d_{C}=\min (d(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}, \mathbf{y} \in C, \mathbf{x} \neq \mathbf{y})=\min (w t(\mathbf{x}) \mid \mathbf{x} \in C, \mathbf{x} \neq 0)
$$

Definition

A code C is said to be t-error correcting if for every vector $\mathbf{x} \in \mathbb{F}_{q}^{n}$, there is at most one codeword $c \in C$ within distance t of \mathbf{x}, that is, with $d(\mathbf{x}, \mathbf{c}) \leqslant t$.

Theorem 6

Let C be a code.
(1) C can correct t errors iff $d_{C} \geqslant 2 t+1$.

Definition

If C is a linear code, then the minimum distance d_{C} of C is defined as

$$
d_{C}=\min (d(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}, \mathbf{y} \in C, \mathbf{x} \neq \mathbf{y})=\min (w t(\mathbf{x}) \mid \mathbf{x} \in C, \mathbf{x} \neq 0)
$$

Definition

A code C is said to be t-error correcting if for every vector $\mathbf{x} \in \mathbb{F}_{q}^{n}$, there is at most one codeword $c \in C$ within distance t of \mathbf{x}, that is, with $d(\mathbf{x}, \mathbf{c}) \leqslant t$.

Theorem 6

Let C be a code.
(1) C can correct t errors iff $d_{C} \geqslant 2 t+1$.
(2) C can detect s errors iff $d_{C} \geqslant s+1$.

