Operator Quantum Error Correcting Codes

Vlad Gheorghiu

Department of Physics
Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A.

June 18, 2008
1. References

2. Evolution of open quantum systems

3. The standard model of quantum error correction

4. Mathematical detour: structure of finite C^* algebras

5. Noiseless subsystems and operator quantum error correction
 - Unital channels
 - General channels
 - Necessary and sufficient conditions for OQEC

6. Examples and discussions
 - Examples
 - Discussions
References

- D. Kribbs, arXiv:math.OA/0506491 - A Brief Introduction to Operator Quantum Error Correction

The present talk is posted online at http://quantum.phys.cmu.edu under the Quantum Information Seminar heading.
The reversibility postulate of quantum mechanics implies that evolution in a closed quantum system occurs via unitary maps

\[\rho \rightarrow U \rho U^\dagger. \]
The reversibility postulate of quantum mechanics implies that evolution in a closed quantum system occurs via unitary maps \(\rho \rightarrow U \rho U^\dagger \).

An open quantum system is a part of a larger closed one,

\[\mathcal{H} = \mathcal{H}_E \otimes \mathcal{H}_S \]

where \(\mathcal{H}_E \) is the environment and \(\mathcal{H}_S \) is the open system.
The reversibility postulate of quantum mechanics implies that evolution in a closed quantum system occurs via unitary maps

$$\rho \rightarrow U\rho U^\dagger.$$

An open quantum system is a part of a larger closed one

$$\mathcal{H} = \mathcal{H}_E \otimes \mathcal{H}_S$$

where \mathcal{H}_E is the **environment** and \mathcal{H}_S is the open system.

Let \mathcal{E} describe the evolution of an open quantum system. Then \mathcal{E} must be positive and trace preserving (maps density operators to density operators).
The reversibility postulate of quantum mechanics implies that evolution in a closed quantum system occurs via unitary maps

\[\rho \rightarrow U \rho U^\dagger. \]

An open quantum system is a part of a larger closed one

\[\mathcal{H} = \mathcal{H}_E \otimes \mathcal{H}_S \]

where \(\mathcal{H}_E \) is the environment and \(\mathcal{H}_S \) is the open system.

Let \(\mathcal{E} \) describe the evolution of an open quantum system. Then \(\mathcal{E} \) must be positive and trace preserving (maps density operators to density operators).

This must hold for any environment, i.e.

\[\text{Identity}_E \otimes \mathcal{E} : \mathcal{L}(\mathcal{H}_E \otimes \mathcal{H}_S) \rightarrow \mathcal{L}(\mathcal{H}_E \otimes \mathcal{H}_S) \]

must be positive and trace-preserving for all \(E \), or, equivalently, completely positive trace preserving (CPTP) map.
A theorem of Choi and Kraus states that

Kraus representation

Every CPTP map \mathcal{E} has an "operator-sum representation" of the form

$$\mathcal{E}(\rho) = \sum_a E_a \rho E_a^\dagger$$

for some set of non-unique operators $\{E_a\}$ with

$$\sum_a E_a^\dagger E_a = \mathbb{I}.$$
A theorem of Choi and Kraus states that

Kraus representation

Every CPTP map \mathcal{E} has an ”operator-sum representation” of the form

$$\mathcal{E}(\rho) = \sum_a E_a \rho E_a^\dagger$$

for some set of non-unique operators $\{E_a\}$ with

$$\sum_a E_a^\dagger E_a = \mathbb{I}.$$

The E_a’s are called **noise operators** or **errors** associated with \mathcal{E}.
A theorem of Choi and Kraus states that every CPTP map \mathcal{E} has an "operator-sum representation" of the form

$$\mathcal{E}(\rho) = \sum_a E_a \rho E_a^\dagger$$

for some set of non-unique operators $\{E_a\}$ with

$$\sum_a E_a^\dagger E_a = \mathbb{I}.$$

The E_a's are called **noise operators** or **errors** associated with \mathcal{E}.

Shorthand: $\mathcal{E} = \{E_a\}$ when an error model for \mathcal{E} is known.
The standard model of quantum error correction

The standard model of QEC

- Triplet \((\mathcal{R}, \mathcal{E}, \mathcal{C})\), where \(\mathcal{C}\) is a subspace, a quantum code, of a Hilbert space \(\mathcal{H}\), and the error \(\mathcal{E}\) and recovery \(\mathcal{R}\) are quantum operations on \(\mathcal{L}(\mathcal{H})\).
The standard model of quantum error correction

The standard model of QEC

- Triplet \((\mathcal{R}, \mathcal{E}, \mathcal{C})\), where \(\mathcal{C}\) is a subspace, a **quantum code**, of a Hilbert space \(\mathcal{H}\), and the **error** \(\mathcal{E}\) and **recovery** \(\mathcal{R}\) are quantum operations on \(\mathcal{L}(\mathcal{H})\).

- In the trivial case when \(\mathcal{E} = \{U\}\) is implemented by a single unitary error operator, the recovery is just the reversal operation \(\mathcal{R} = \{U^\dagger\}\)

\[
\rho \xrightarrow{\mathcal{E}} U\rho U^\dagger \xrightarrow{\mathcal{R}} U^\dagger(U\rho U^\dagger)U = \rho.
\]
The standard model of quantum error correction

- Triplet \((\mathcal{R}, \mathcal{E}, \mathcal{C})\), where \(\mathcal{C}\) is a subspace, a quantum code, of a Hilbert space \(\mathcal{H}\), and the error \(\mathcal{E}\) and recovery \(\mathcal{R}\) are quantum operations on \(\mathcal{L}(\mathcal{H})\).

- In the trivial case when \(\mathcal{E} = \{U\}\) is implemented by a single unitary error operator, the recovery is just the reversal operation \(\mathcal{R} = \{U^\dagger\}\)

\[
\rho \xrightarrow{\mathcal{E}} U\rho U^\dagger \xrightarrow{\mathcal{R}} U^\dagger(U\rho U^\dagger)U = \rho.
\]

- More generally, the set \((\mathcal{R}, \mathcal{E}, \mathcal{C})\) forms an "error triple" if \(\mathcal{R}\) undoes the effects of \(\mathcal{E}\) on \(\mathcal{C}\).
The standard model of quantum error correction

- Triplet \((\mathcal{R}, \mathcal{E}, \mathcal{C})\), where \(\mathcal{C}\) is a subspace, a quantum code, of a Hilbert space \(\mathcal{H}\), and the error \(\mathcal{E}\) and recovery \(\mathcal{R}\) are quantum operations on \(\mathcal{L}(\mathcal{H})\).

- In the trivial case when \(\mathcal{E} = \{U\}\) is implemented by a single unitary error operator, the recovery is just the reversal operation \(\mathcal{R} = \{U^\dagger\}\)

\[
\rho \xrightarrow{\mathcal{E}} U\rho U^\dagger \xrightarrow{\mathcal{R}} U^\dagger(U\rho U^\dagger)U = \rho.
\]

- More generally, the set \((\mathcal{R}, \mathcal{E}, \mathcal{C})\) forms an ”error triple” if \(\mathcal{R}\) undoes the effects of \(\mathcal{E}\) on \(\mathcal{C}\)

\[
\mathcal{R}(\mathcal{E}(\sigma)) = \sigma, \forall \sigma \in \mathcal{L}(\mathcal{H}).
\]
When there exists such an \mathcal{R} for a given pair \mathcal{E}, \mathcal{C}, the subspace \mathcal{C} is said to be correctable for \mathcal{E}.
When there exists such an \mathcal{R} for a given pair \mathcal{E}, \mathcal{C}, the subspace \mathcal{C} is said to be correctable for \mathcal{E}.

QEC conditions (Knill-Laflamme)

Given $\mathcal{E} = \{E_a\}$, there exists a recovery operation \mathcal{R} on \mathcal{C} iff there exists a complex matrix $\Lambda = (\lambda_{ab})$ s.t.

$$P_C E_a^\dagger E_b P_C = \lambda_{ab} P_C, \forall a, b,$$

where P is the projector onto the coding space \mathcal{C}.
Let $E = \{E_a\}$ be a quantum operation. Let \mathcal{A} be the C^*-algebra generated by the E_a, i.e. the set of polynomials in the E_a and E_a^\dagger. Furthermore,

$$\mathcal{A} \cong \bigoplus_J (\mathcal{M}_{m_J} \otimes \mathbb{I}_{n_J}).$$
Mathematical detour: structure of finite C^* algebras

The structure of finite dimensional C^* algebras

Let $\mathcal{E} = \{E_a\}$ be a quantum operation. Let \mathcal{A} be the C^*-algebra generated by the E_a, i.e. the set of polynomials in the E_a and E_a^\dagger. Furthermore,

$$\mathcal{A} \cong \bigoplus_J (\mathcal{M}_{m_J} \otimes \mathbb{I}_{n_J}).$$

This means that there is an orthonormal basis such that the matrix representation of operators in \mathcal{A} w.r.t. this basis have the form given above. \mathcal{A} is called the interaction algebra associated with \mathcal{E}.
Let $\mathcal{E} = \{E_a\}$ be a quantum operation. Let \mathcal{A} be the C^*-algebra generated by the E_a, i.e. the set of polynomials in the E_a and E_a^\dagger. Furthermore,

$$\mathcal{A} \cong \bigoplus_j (\mathcal{M}_{m_j} \otimes \mathbb{I}_{n_j}).$$

This means that there is an orthonormal basis such that the matrix representation of operators in \mathcal{A} w.r.t. this basis have the form given above. \mathcal{A} is called the **interaction algebra** associated with \mathcal{E}.

- The **noise commutant** associated with \mathcal{E}

$$\mathcal{A}' = \left\{ \sigma : [E, \sigma] = 0, \forall E \in \{E_a, E_a^\dagger\} \right\}.$$
The structure of finite dimensional C^*-algebras

- Let $\mathcal{E} = \{E_a\}$ be a quantum operation. Let \mathcal{A} be the C^*-algebra generated by the E_a, i.e. the set of polynomials in the E_a and E_a^\dagger. Furthermore,

$$\mathcal{A} \cong \bigoplus_j (\mathcal{M}_{m_j} \otimes \mathcal{I}_{n_j}).$$

This means that there is an orthonormal basis such that the matrix representation of operators in \mathcal{A} w.r.t. this basis have the form given above. \mathcal{A} is called the interaction algebra associated with \mathcal{E}.

- The noise commutant associated with \mathcal{E}

$$\mathcal{A}' = \left\{ \sigma : [E, \sigma] = 0, \forall E \in \{E_a, E_a^\dagger\} \right\}.$$

- The structure of \mathcal{A} implies that the noise commutant is unitarily equivalent to

$$\mathcal{A}' = \bigoplus_j (\mathcal{I}_{m_j} \otimes \mathcal{M}_{n_j}).$$
When \mathcal{E} is unital (i.e. $\sum_a E_a E_a^\dagger = I$), then all states encoded in \mathcal{A}' are immune to the errors of \mathcal{E}. Note that decoherence-free subspaces arise as a special case, when $m_J = 1$.
When E is unital (i.e. $\sum_a E_a E_a^\dagger = I$), then all states encoded in \mathcal{A}' are immune to the errors of E.

Furthermore, it has been shown that when E is unital, the noise commutant coincides with the set of fixed points for E, i.e.

$$\mathcal{A}' = \text{Fix}(E) = \left\{ \sigma : E(\sigma) = \sum_a E_a \sigma E_a^\dagger = \sigma \right\}.$$
When \mathcal{E} is unital (i.e. $\sum_a E_a E_a^\dagger = \mathbb{I}$), then all states encoded in \mathcal{A}' are immune to the errors of \mathcal{E}.

Furthermore, it has been shown that when \mathcal{E} is unital, the noise commutant coincides with the set of fixed points for \mathcal{E}, i.e.

$$\mathcal{A}' = \text{Fix}(\mathcal{E}) = \left\{ \sigma : \mathcal{E}(\sigma) = \sum_a E_a \sigma E_a^\dagger = \sigma \right\}.$$

Note that **decoherence-free subspaces** arise as a special case, when $m_J = 1$.
The structure of the algebra \mathcal{A} induces a natural decomposition of the Hilbert space as

$$\mathcal{H} = \bigoplus_J \mathcal{H}^A_J \otimes \mathcal{H}^B_J,$$

where the "noisy subsystems" \mathcal{H}^A_J have dimension m_J and the "noisless subsystems" \mathcal{H}^B_J have dimension n_J.
The structure of the algebra \mathcal{A} induces a natural decomposition of the Hilbert space as

$$\mathcal{H} = \bigoplus_J \mathcal{H}^A_J \otimes \mathcal{H}^B_J,$$

where the "noisy subsystems" \mathcal{H}^A_J have dimension m_J and the "noisless subsystems" \mathcal{H}^B_J have dimension n_J.

For simplicity, assume that the information is encoded into a single noiseless sector of $\mathcal{L}(\mathcal{H})$, and hence

$$\mathcal{H} = (\mathcal{H}^A \otimes \mathcal{H}^B) \oplus \mathcal{K},$$

with $\dim(\mathcal{H}^A) = m$, $\dim(\mathcal{H}^B) = n$ and $\dim(\mathcal{K}) = \dim(\mathcal{H}) - mn$.
Let \(\{ |\alpha_k\rangle : 1 \leq k \leq m \} \) be an orthonormal basis for \(\mathcal{H}^A \) and let
\[
\{ P_{kl} = |\alpha_k\rangle\langle \alpha_l| \otimes I_n : 1 \leq k, k \leq m \}.
\]
Let \(\{ |\alpha_k\rangle : 1 \leq k \leq m \} \) be an orthonormal basis for \(\mathcal{H}^A \) and let
\[
\{ P_{kl} = |\alpha_k\rangle\langle\alpha_l| \otimes \mathbb{I}_n : 1 \leq k, k \leq m \}.
\]

Define the semigroup
\[
\mathbb{U} = \{ \sigma \in \mathcal{L}(\mathcal{H}) : \sigma = \sigma^A \otimes \sigma^B, \text{ for some } \sigma^A \text{ and } \sigma^B \}.
\]
Let \(\{ |\alpha_k\rangle : 1 \leq k \leq m \} \) be an orthonormal basis for \(\mathcal{H}^A \) and let
\[
\{ P_{kl} = |\alpha_k\rangle \langle \alpha_l| \otimes \mathbb{I}_n : 1 \leq k, l \leq m \}.
\]

Define the semigroup
\[
\mathbb{U} = \{ \sigma \in \mathcal{L}(\mathcal{H}) : \sigma = \sigma^A \otimes \sigma^B, \text{ for some } \sigma^A \text{ and } \sigma^B \}.
\]

Let \(P_k = P_{kk}, \ P_\mathbb{U} = P_1 + P_2 + \ldots + P_m \) and \(P_\mathbb{U} \mathcal{H} = \mathcal{H}^A \otimes \mathcal{H}^B \).
Define a map \(\mathcal{P}_\mathbb{U}(\cdot) = P_\mathbb{U}(\cdot)P_\mathbb{U} \).
The following three conditions are equivalent for the \mathcal{H}^B sector of the semigroup \mathbb{U} to encode a noiseless subsystem:
The following three conditions are equivalent for the \mathcal{H}^B sector of the semigroup \mathbb{U} to encode a noiseless subsystem:

1. $\forall \sigma^A, \forall \sigma^B, \exists \tau^A : \mathcal{E}(\sigma^A \otimes \sigma^B) = \tau^A \otimes \sigma^B$
2. $\forall \sigma^B, \exists \tau^A : \mathcal{E}(\mathbb{I}^A \otimes \sigma^B) = \tau^A \otimes \sigma^B$
3. $\forall \sigma \in \mathbb{U} : (\text{Tr}_A \circ \mathcal{P}_\mathbb{U} \circ \mathcal{E})(\sigma) = \text{Tr}_A(\sigma)$.

Equivalent conditions for noiseless subsystems

- $\forall \sigma^A, \forall \sigma^B, \exists \tau^A : \mathcal{E}(\sigma^A \otimes \sigma^B) = \tau^A \otimes \sigma^B$
- $\forall \sigma^B, \exists \tau^A : \mathcal{E}(\mathbb{I}^A \otimes \sigma^B) = \tau^A \otimes \sigma^B$
- $\forall \sigma \in \mathbb{U} : (\text{Tr}_A \circ \mathcal{P}_\mathbb{U} \circ \mathcal{E})(\sigma) = \text{Tr}_A(\sigma)$.

Note that decoding is not necessary.
The following three conditions are equivalent for the \mathcal{H}^B sector of the semigroup \mathbb{U} to encode a noiseless subsystem:

Equivalent conditions for noiseless subsystems

1. $\forall \sigma^A, \forall \sigma^B, \exists \tau^A : \mathcal{E}(\sigma^A \otimes \sigma^B) = \tau^A \otimes \sigma^B$

2. $\forall \sigma^B, \exists \tau^A : \mathcal{E}(\mathbb{I}^A \otimes \sigma^B) = \tau^A \otimes \sigma^B$

3. $\forall \sigma \in \mathbb{U} : (\text{Tr}_A \circ \mathcal{P}_\mathbb{U} \circ \mathcal{E})(\sigma) = \text{Tr}_A(\sigma)$.

- Note that **decoding** is not necessary.
The following three conditions are equivalent for the \mathcal{H}^B sector of the semigroup \mathbb{U} to encode a noiseless subsystem:

Equivalent conditions for noiseless subsystems

1. $\forall \sigma^A, \forall \sigma^B, \exists \tau^A : \mathcal{E}(\sigma^A \otimes \sigma^B) = \tau^A \otimes \sigma^B$
2. $\forall \sigma^B, \exists \tau^A : \mathcal{E}(\mathbb{I}^A \otimes \sigma^B) = \tau^A \otimes \sigma^B$
3. $\forall \sigma \in \mathbb{U} : (\text{Tr}_A \circ \mathcal{P}_\mathbb{U} \circ \mathcal{E})(\sigma) = \text{Tr}_A(\sigma)$.

- Note that **decoding** is not necessary.
- **Operator quantum error correction**: same conditions as for the noiseless subsystems, but decoding (or recovery) is included, i.e.

$$\forall \sigma^A, \sigma^B, \exists \tau^A : \mathcal{R}(\mathcal{E}(\sigma^A \otimes \sigma^B)) = \tau^A \otimes \sigma^B.$$
To be used in practical applications, one needs easily testable conditions for a map $\mathcal{E} = \{E_a\}$ to admit a noiseless subsystem.
To be use in practical applications, one needs easily testable conditions for a map $\mathcal{E} = \{E_a\}$ to admit a noiseless subsystem.

Compact algebraic characterization of OQEC

The following conditions are equivalent:

1. \mathcal{H}^B is an \mathcal{E}-correcting subsystem with respect to the decomposition $\mathcal{H} = (\mathcal{H}^A \otimes \mathcal{H}^B) \oplus \mathcal{K}$.

2. $PE_a^\dagger E_b P = A_{ab} \otimes I^B$, $\forall a, b$, where P is the projector onto $\mathcal{H}^A \otimes \mathcal{H}^B$ and the A_{ab} are operators on A.
Examples

Let \(\{|a\rangle, |b\rangle, |a'\rangle, |b'\rangle\} \) and \(\{|a_1\rangle, |b_1\rangle, |a_2\rangle, |b_2\rangle\} \) be two orthonormal bases for \(\mathbb{C}^4 \). Let \(P_1 \) be the projection onto \(\text{span}\{|a\rangle, |b\rangle\} \) and \(P_2 \) the projection onto \(\text{span}\{|a'\rangle, |b'\rangle\} \). Let \(Q_i, i = 1, 2, \) be the projection onto \(\text{span}\{|a_i\rangle, |b_i\rangle\} \). Define operators \(U_1, U'_1, U_2, U'_2 \) on \(\mathbb{C}^4 \) as

\[
U_1|a\rangle = |a_1\rangle, \quad U_1|b\rangle = |b_1\rangle; \quad U'_1|a'\rangle = |a_1\rangle, \quad U'_1|b'\rangle = |b_1\rangle;
\]

\[
U_2|a\rangle = |a_2\rangle, \quad U_2|b\rangle = |b_2\rangle; \quad U'_2|a'\rangle = |a_2\rangle, \quad U'_2|b'\rangle = |b_2\rangle
\]

and put \(U_1 P_2 \equiv U'_1 P_1 \equiv U_2 P_2 \equiv U'_2 P_1 \equiv 0 \).
Let \{\ket{a}, \ket{b}, \ket{a'}, \ket{b'}\} and \{\ket{a_1}, \ket{b_1}, \ket{a_2}, \ket{b_2}\} be two orthonormal bases for \(\mathbb{C}^4\). Let \(P_1\) be the projection onto \(\text{span}\{\ket{a}, \ket{b}\}\) and \(P_2\) the projection onto \(\text{span}\{\ket{a'}, \ket{b'}\}\). Let \(Q_i, i = 1, 2\), be the projection onto \(\text{span}\{\ket{a_i}, \ket{b_i}\}\). Define operators \(U_1, U'_1, U_2, U'_2\) on \(\mathbb{C}^4\) as

\[
U_1\ket{a} = \ket{a_1}, \quad U_1\ket{b} = \ket{b_1}; \quad U'_1\ket{a'} = \ket{a_1}, \quad U'_1\ket{b'} = \ket{b_1};
\]
\[
U_2\ket{a} = \ket{a_2}, \quad U_2\ket{b} = \ket{b_2}; \quad U'_2\ket{a'} = \ket{a_2}, \quad U'_2\ket{b'} = \ket{b_2}
\]
and put \(U_1P_2 \equiv U'_1P_1 \equiv U_2P_2 \equiv U'_2P_1 \equiv 0\).

These operators are ”partial isometries” and satisfy

\[
U_1 = U_1P_1, \quad U'_1 = U'_1P_2, \quad U_2 = U_2P_1, \quad U'_2 = U'_2P_2.
\]
Let \(\{|a\rangle, |b\rangle, |a'\rangle, |b'\rangle\} \) and \(\{|a_1\rangle, |b_1\rangle, |a_2\rangle, |b_2\rangle\} \) be two orthonormal bases for \(\mathbb{C}^4 \). Let \(P_1 \) be the projection onto \(\text{span}\{|a\rangle, |b\rangle\} \) and \(P_2 \) the projection onto \(\text{span}\{|a'\rangle, |b'\rangle\} \). Let \(Q_i, i = 1, 2 \), be the projection onto \(\text{span}\{|a_i\rangle, |b_i\rangle\} \). Define operators \(U_1, U'_1, U_2, U'_2 \) on \(\mathbb{C}^4 \) as

\[
U_1 |a\rangle = |a_1\rangle, \quad U_1 |b\rangle = |b_1\rangle; \quad U'_1 |a'\rangle = |a_1\rangle, \quad U'_1 |b'\rangle = |b_1\rangle;
\]

\[
U_2 |a\rangle = |a_2\rangle, \quad U_2 |b\rangle = |b_2\rangle; \quad U'_2 |a'\rangle = |a_2\rangle, \quad U'_2 |b'\rangle = |b_2\rangle \]

and put \(U_1 P_2 \equiv U'_1 P_1 \equiv U'_2 P_2 \equiv U'_2 P_1 \equiv 0 \).

These operators are “partial isometries” and satisfy

\[
U_1 = U_1 P_1, \quad U'_1 = U'_1 P_2, \quad U_2 = U_2 P_1, \quad U'_2 = U'_2 P_2.
\]

The operators \(\mathcal{E} = \{E_1, E_2\} \) define a quantum channel where

\[
E_1 = \frac{1}{\sqrt{2}} (U_1 P_1 + U'_1 P_2)
\]

\[
E_2 = \frac{1}{\sqrt{2}} (U_2 P_1 - U'_2 P_2).
\]

Vlad Gheorghiu (CMU) Operator Quantum Error Correcting Codes June 18, 2008 14 / 16
The action of E_1 and E_2 is indicated below.

$P_1\begin{array}{c} |a\rangle \\
|b\rangle \end{array}$ $\quad E_1 \quad \begin{array}{c} \quad |a_1\rangle \\
\quad |b_1\rangle \end{array}$ $P_2\begin{array}{c} |a'\rangle \\
|b'\rangle \end{array}$ $\quad E_2 \quad \begin{array}{c} \quad |a_2\rangle \\
\quad |b_2\rangle \end{array}$
The action of E_1 and E_2 is indicated below.

![Diagram](image)

- **Recovery**: define $V_{11} = U_1 P_1$, $V_{12} = U'_1 P_2$, $V_{21} = U_2 P_1$, $V_{22} = U'_2 P2$ and let the recovery operators be

$$\mathcal{R} = \left\{ \frac{1}{\sqrt{2}} V^\dagger_{jk} Q_j : 1 \leq j, k \leq 2 \right\}.$$
The action of E_1 and E_2 is indicated below.

Recovery: define $V_{11} = U_1 P_1$, $V_{12} = U'_1 P_2$, $V_{21} = U_2 P_1$, $V_{22} = U'_2 P_2$ and let the recovery operators be

$$R = \left\{ \frac{1}{\sqrt{2}} V_{jk}^\dagger Q_j : 1 \leq j, k \leq 2 \right\}.$$

Then all errors induced by \mathcal{E} on $\mathbb{U}_0 \cong \mathbb{I}_2 \otimes \mathcal{M}_2$ can be corrected, i.e.

$$R(\mathcal{E}(\sigma)) = \sigma, \quad \forall \sigma \in \mathcal{L}(\mathbb{C}^4)$$

that have a matrix representation of the form $\sigma = \sigma_1 \oplus \sigma_1$, $\sigma_1 \in \mathcal{M}_2$ with respect to the ordered basis $\{|a\rangle, |b\rangle, |a'\rangle, |b'\rangle\}$.
QEC is a subset of OQEC (set $\dim(\mathcal{H}^A) = 1$).
QEC is a subset of OQEC (set $\dim(\mathcal{H}^A) = 1$).

As seen in previous examples, there are OQECC that cannot be realized as QECC, so QEC is strictly included in OQEC.
QEC is a subset of OQEC (set $\dim(H^A)=1$).

As seen in previous examples, there are OQECC that cannot be realized as QECC, so QEC is strictly included in OQEC.

What about fault-tolerant OQECC?