Quantum State Estimation

Statistics meets Quantum Mechanics

Shiang Yong LOOI
Carnegie Mellon University
14th Aug 2008
Quantum State Estimation

Say we have a two-level quantum system

\[|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \]

where the coefficients are unknown.

Given \(n \) copies of the state, our task is to estimate \(\alpha \) and \(\beta \).

Want to devise efficient ways to estimate coefficients.
Talk Overview

- Introduction to statistical estimation
- Quantum state estimation
- Cube and Tetrahedron measurement schemes
- Comparison
Statistical Estimation

Say we have a RV with Poisson distribution

\[X \sim \text{Poisson}(\lambda) \]

\[\Pr(X = x) = \frac{e^{-\lambda} \lambda^x}{x!} \quad x = 0, 1, 2, \ldots \]

and we want to learn what \(\lambda \) is by sampling values.
Statistical Estimation

We sample \(n \) times from the same distribution, \(\{X_1, X_2, \ldots, X_n\} \).

How to get an estimate of \(\lambda \) from these samples?

We know the expectation value of \(X_i \) is \(\lambda \).

\[
E(X_i) = \sum_{x=0}^{\infty} x \frac{e^{-\lambda} \lambda^x}{x!} = \lambda
\]
Statistical Estimation

Therefore, one way to estimate lambda is by using the *sample mean* of \(\{X_i\} \).

\[
\hat{\lambda}_1 := \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X}
\]

This is also the *Maximum Likelihood* estimator.
Statistical Estimation

We also know the variance of X is λ, or

$$\mathbb{V}(X_i) \equiv \mathbb{E}(X_i^2) - \mathbb{E}^2(X_i) = \lambda$$

which suggests another estimator

$$\hat{\lambda}_2 := \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$
Statistical Estimation

Are there other estimators?

Which estimator is better?

Three metrics to compare estimators

1) Bias
2) Variance
3) Mean Squared Error, MSE
Bias

Recall the first estimator,

\[\hat{\lambda}_1 := \frac{1}{n} \sum_{i=1}^{n} X_i \]

Now, \(\hat{\lambda}_1 \) is itself a random variable.

Ideally, \(\hat{\lambda}_1 \) should be distributed around \(\lambda \).

Would like \(\mathbb{E}(\hat{\lambda}_1) \) to be close to \(\lambda \).
Bias

\[\mathbb{E}(\hat{\lambda}_1) = \sum_{x_1, x_2, \ldots} \left(\frac{1}{n} \sum_i x_i \right) \Pr(x_1) \Pr(x_2) \cdots \]
Bias

\[E(\hat{\lambda}_1) = E\left(\frac{1}{n} \sum X_i \right) = \frac{1}{n} E\left(\sum X_i \right) \]
\[= \frac{1}{n} (n \lambda) = \lambda \]

Bias(\hat{\lambda}_1) := E(\hat{\lambda}_1) - \lambda
\[= 0 \]

\(\hat{\lambda}_1 \) is an unbiased estimator.
Bias

The second estimator,

$$\hat{\lambda}_2 := \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

$$\text{Bias} (\hat{\lambda}_2) = 0$$
Bias

Let's define another estimator,

\[\hat{\lambda}_3 := \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 \]

What's the bias of this estimator?
Bias

\[\text{Bias}(\hat{\lambda}_3) := \mathbb{E}(\hat{\lambda}_3) - \lambda \]

\[
= \mathbb{E}\left(\left(\frac{n-1}{n} \right) \hat{\lambda}_2 \right) - \lambda \\
= \lambda \left(\frac{n-1}{n} \right) - \lambda \\
= -\frac{\lambda}{n}
\]

Estimator is biased, but asymptotically unbiased.
Variance

Recall that both $\hat{\lambda}_1$ and $\hat{\lambda}_2$ are unbiased.

Variance is a measure of the spread.

Therefore, smaller variance is better.
Variance

\[\mathbb{V}(\hat{\lambda}_1) = \frac{\lambda}{n} \]

\[\mathbb{V}(\hat{\lambda}_2) = \lambda \frac{(n-1)^2}{n^3} + 2\lambda^2 \frac{(2n-1)}{n^2} \]

\[\mathbb{V}(\hat{\lambda}_3) = \frac{\lambda}{n} + \frac{2\lambda^2}{n - 1} \]

For \(n > 1 \), \(\mathbb{V}(\hat{\lambda}_1) \leq \mathbb{V}(\hat{\lambda}_3) \leq \mathbb{V}(\hat{\lambda}_2) \) \(\forall \lambda \)
Variance

\[\mathbb{V}(\hat{\lambda}_1) = \frac{\lambda}{n} \]

\[\mathbb{V}(\hat{\lambda}_2) = \lambda \frac{(n-1)^2}{n^3} + 2\lambda^2 \frac{(2n-1)}{n^2} \]

Since they are both unbiased, pick the one with smaller variance.

Using Cramer-Rao lower bound, no unbiased estimator has smaller variance than \(\frac{\lambda}{n} \).
Variance

\[\text{Var} \left(\hat{\lambda}_2 \right) = \lambda \frac{ (n-1)^2 }{ n^3 } + 2\lambda^2 \frac{ (2n-1) }{ n^2 } \]

\[\text{Var} \left(\hat{\lambda}_3 \right) = \frac{ \lambda }{ n } + \frac{ 2\lambda^2 }{ n - 1 } \]

\(\hat{\lambda}_2 \) has bigger variance.
\(\hat{\lambda}_3 \) has bigger bias.
MSE

\[\text{MSE}(\hat{\lambda}_2) := \mathbb{V}(\hat{\lambda}_2) + \text{Bias}^2(\hat{\lambda}_2) \]

For \(n > 1 \), \(\text{MSE}(\hat{\lambda}_3) \leq \text{MSE}(\hat{\lambda}_2) \quad \forall \lambda \)

If we have to choose between these two, pick the one with smaller MSE.
Statistical Estimation

Three metrics to compare estimators

1) Bias

2) Variance

3) Mean Squared Error, MSE
Quantum State Estimation

Say we have a two-level quantum system

\[|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \]

where the coefficients are unknown.

Given n copies of the state, our task is to estimate \(\alpha \) and \(\beta \).
Quantum State Estimation

In terms of density operator

\[\rho = |\psi\rangle \langle \psi| = \frac{1}{2} \left(\mathbb{1} + \vec{r} \cdot \vec{\sigma} \right) \]

where \(\vec{r} \) is the Bloch vector of length 1.

Next define \(\hat{\vec{R}} \) as our estimate of \(\vec{r} \), also of length 1.
Quantum State Estimation

We will be studying the fidelity

\[\hat{F} := \frac{1}{2} \left(1 + \vec{r} \cdot \vec{R} \right) \]

We will look at

1) Two measurement schemes
Quantum State Estimation

We will be studying the fidelity

$$\hat{F} := \frac{1}{2} \left(1 + \vec{r} \cdot \vec{R} \right)$$

We will look at

1) Two measurement schemes
2) Two estimators, \vec{R}
Quantum State Estimation

We will be studying the fidelity

\[\hat{F} := \frac{1}{2} \left(1 + \vec{r} \cdot \vec{R} \right) \]

We will look at

1) Two measurement schemes
2) Two estimators, \(\vec{R} \)
3) Bias, variance and MSE of \(\hat{F} \) and how it depends on \(\vec{r} \)