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Brief of stabilizers

Brief review of stabilizers

In general, an n-qubit entangled state needs to be described by 2n

complex coefficients.

This is bad! This is one of the reasons for which quantum computers
are hard to simulate on a classical computer.

But some entangled states are not so bad...

Consider the maximally entangled state

|B0〉 =
|00〉+ |11〉√

2
.

Note that X1 ⊗ X2|B0〉 = |B0〉 and Z1 ⊗ Z2|B0〉 = |B0〉.
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Brief of stabilizers

We say that |B0〉 is stabilized by X1X2 and Z1Z2.

Actually it is stabilized as well by X1Z1X2Z2 and trivially by I1I2.

Our state is therefore stabilized by an (Abelian) subgroup of the Pauli
group on 2 qubits: S = {I1I2,X1X2,Z1Z2,Y1Y2}, where we use the
convention that Y = XZ . What is not so obvious is that, up to a
global phase, |B0〉 is the only state stabilized by S. We say that |B0〉
is a stabilizer state.

A non-Abelian subgroup of the Pauli cannot stabilize a state. Why?

Any Abelian group S of size |S| can be described compactly using at
most log(|S|) generators. In our case, S = 〈X1X2,Z1Z2〉.
Stabilizer states are more conveniently described by log(|S|)
generators rather than by their complex coefficients.
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Brief of stabilizers

More “dramatic” example:
|ψ〉 = 1

4(|00000〉+ |10010〉+ |01001〉+ |10100〉+ |01010〉 −
|11011〉 − |00110〉 − |11000〉 − |11101〉 − |00011〉 − |11110〉 −
|01111〉 − |10001〉 − |01100〉 − |10111〉+ |00101〉)
is stabilized by

〈XZZXI , IXZZX ,XIXZZ ,ZXIXZ ,ZZXIX 〉

In general any Abelian subgroup of the Pauli group on n qubits will
stabilize some vector space.

For example S = 〈Z1Z2〉 stabilizes Span{|00〉, |11〉}.
There is a duality between the vector space and its stabilizer. One
uniquely defines the other and vice-versa.

If the dimension of the stabilized vector space is greater than 1, then
we have a stabilizer code.
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Brief of stabilizers

The Gottesman-Knill theorem in a nutshell

Recap: Abelian subgroup of Pauli group ↔ subspace ↔ stabilizer
code (state).

If |ψ〉 is stabilized by S, then U|ψ〉 is stabilized by USU†

The unitaries that map the n qubit Pauli group to itself under
conjugation are called Clifford operations.

They map stabilizer states (codes) to stabilizer states (codes).

Are easy to simulate on a classical computer! (This is the
Gottesman-Knill theorem in a nutshell).
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Brief of stabilizers

Binary (algebraic) representation of stabilizer states/codes

Let S = 〈g1, g2, . . . gk〉. We can represent these generators in a
compact form, using what is called a binary check matrix.

A generator consists of I ,X ,Z and XZ operators (up to a sign, which
one can keep track of). Can be generically represented as X~xZ~z .
Group the binary n-dim row vectors ~x and ~z in a 2n row vector,
denoted generically as (~x |~z). That’s how one gets the k rows of the
k × 2n check matrix.

Example: S = 〈X1I2I3,Z1Z2X3〉 is represented by the check matrix

S =

(
100|000
001|110

)

Conjugating the stabilizer generators by a Clifford operation
corresponds to right-multiplying (column operations) the check matrix
by an appropriate 2n× 2n invertible binary matrix (symplectic matrix).
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Brief of stabilizers

Left multiplication (row operations) do not alter the stabilizer group,
although in general changes the check matrix.

For example, a conjugation by a Hadamard H = 1√
2

(
1 1
1 −1

)
on the

third qubit changes S to HSH† = 〈X1I2I3,Z1Z2Z3〉, and the new
check matrix will be

S ′ =

(
100|000
000|111

)
=

(
100|000
001|110

)


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0


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Qudit stabilizers

Qudit stabilizers

Stabilizer: an Abelian subgroup of the Pauli group on n qudits.

Each qudit is assumed to have dimension D > 2.

Instead of X and Z use “generalized” Pauli operators

X =
D−1∑
j=0

|j〉 〈j ⊕ 1| , Z =
D−1∑
j=0

ωj |j〉 〈j |, ω = e2πi/D .

The check matrix of a stabilizer with k generators is now a k × 2n
matrix over ZD , the ring of integers mod D.

By appropriate Clifford operations, one can transform the stabilizer to
a simpler “canonical form”.
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Canonical form of qudit stabilizer codes

The Smith normal form

The following hold:

Theorem (Smith normal form)

Let S be an M × N integer matrix over ZD . Then there exist invertible
integer matrices L and R such that LSR = S ′ is diagonal.

Trick: put the X -part of the stabilizer matrix in Smith normal form,
through a sequence of column operations (that correspond to
appropriate Clifford operations).

We will use the following Clifford gates:
CNOTab =

∑D−1
j=0 |j〉 〈j |a ⊗ X j

b, SWAPab =
∑D−1

j ,k=0 |k〉 〈j |a ⊗ |j〉 〈k |b
and Sq =

∑D−1
j=0 |j〉 〈jq| (with q invertible).

Each of these operations have a corresponding elementary column
operation (on the check matrix)
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Canonical form of qudit stabilizer codes

Column operations

Corresponding column operations:
1 SWAPab: interchange cols. a and b (on both X and Z part of the

check matrix)
2 Sa

q−1 : X part multiply col. a by invertible integer q; Z part multiply

col. a by invertible integer q−1

3 CNOT−m
ba : X part add m times col. b to col. a; Z part substract m

times col. a from col. b

Nice fact: the X and Z part of the check matrix do not “mix” during
this process

Put the X part of the check matrix in Smith normal form using a
sequence of elementary row/column operations, and construct (step
by step) the required Clifford operator C
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Canonical form of qudit stabilizer codes

During the process the group stays Abelian (conjugation by unitaries
preserves commutation relations), so at the end it must be Abelian.

We end up with generators of the form 〈Xm1
1 Z ~z1 , . . . ,Xmk

k Z ~zk 〉, but
the generators must commute.

This imposes
ZM = MZT

When D is prime, all mj can be chosen to be 1, so we have shown
that the code is Clifford-equivalent to a graph code.

In Phys. Rev. A 81, 032326 (2010), ”Location of quantum
information in additive graph codes”, V. Gheorghiu, S. Y. Looi and R.
B. Griffiths, we have an explicit unitary encoding circuit for graph
codes.

Use it for general stabilizer codes, not just graph codes, multiplying it
by the extra Clifford C (that puts the stabilizer into the canonical
form).
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