Quantum Information Seminar/Workshop

Summary for 6 July 2006: Vlad Gheorghiu and Robert Griffiths

July 23, 2006

Abstract

We will discuss the extension of the notion of a graph state from qubits to general ddimensional qudits. Principal reference: Zhou et al., Phys. Rev. A 68 (2003) 062303.

1 Review of qubit graph states

A graph is a set of nodes, which may be joined by vertices. We assume that there are no loops and that the graph is non-directional.

A graph state is obtained in the following way: replace the nodes with qubits, initially in the $|+\rangle$ state; apply a controlled-phase gate for each pair of directly joined qubits. In the computational basis the controlled-phase (CP) gate is defined as

$$
\begin{equation*}
C P|j k\rangle=(-1)^{j k}|j k\rangle \tag{1}
\end{equation*}
$$

where $j, k \in\{0,1\}$. The resulting state is called a graph state.

2 The qudit case

2.1 Some definitions

Now we consider a d-level quantum system. We would like to generalize the qubit results to this more general case. The ideas are similar. Let \mathcal{H} be the Hilbert space of the system. The computational basis is denoted by $\{|0\rangle,|1\rangle, \ldots,|d-1\rangle\}$. Now X and Z operators are defined as

$$
\begin{align*}
X|k\rangle & =|k \ominus 1\rangle \tag{2}\\
Z|k\rangle & =\omega^{k}|k\rangle \tag{3}
\end{align*}
$$

where $\omega=\exp (2 \pi i / 3)$.
In the computational basis X and Z are represented as

$$
\begin{align*}
& Z=\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & \omega & 0 & \ldots & 0 \\
0 & 0 & \omega^{2} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \omega^{d}
\end{array}\right) \tag{4}\\
& X=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
1 & 0 & 0 & \ldots & 0
\end{array}\right) \tag{5}
\end{align*}
$$

We can define now the Fourier transform of the computational basis

$$
\begin{equation*}
|\bar{j}\rangle=\frac{1}{\sqrt{d}} \sum_{k=0}^{d-1} \omega^{j k}|k\rangle \tag{6}
\end{equation*}
$$

One can easily check that

$$
\begin{align*}
& X|\bar{j}\rangle=\omega^{j}|\bar{j}\rangle \tag{7}\\
& Z|\bar{j}\rangle=|\bar{j}+1\rangle
\end{align*}
$$

The following commutation relations hold

$$
\begin{equation*}
X^{j} Z^{k}=\omega^{j k} Z^{k} X^{j} \tag{8}
\end{equation*}
$$

By a proper redefinition of X and Z, one can simplify the above commutation relation

$$
\begin{equation*}
\overline{X Z}=\omega \overline{Z X} \tag{9}
\end{equation*}
$$

where

$$
\begin{align*}
& \bar{Z}=\omega^{-\frac{d-1}{2} m_{1} n_{1}} Z^{m_{1}} X^{n_{1}} \\
& \bar{X}=\omega^{-\frac{d-1}{2} m_{2} n_{2}} Z^{m_{2}} X^{n_{2}} \tag{10}
\end{align*}
$$

with $m_{1}, n_{1}, m_{2}, n_{2}$ chosen such that $\left(m_{1}, n_{1}\right)=1,\left(m_{2}, n_{2}\right)=1$ and $m_{1} n_{2}-m_{2} n_{1}=1$.
\bar{Z} and \bar{X} can simultaneously be written as

$$
\begin{equation*}
\bar{Z}=U Z U^{\dagger}, \quad \bar{X}=U X U^{\dagger} \tag{11}
\end{equation*}
$$

2.2 The preparation of the graph state

We now restrict to one-dimensional clusters.

1. Step 1: Prepare each qudit in the state
2. Step 2: Apply a generalized controlled-phase gate defined by

$$
\begin{align*}
& S=\prod_{b \in \mathcal{N}(a)} S_{a b}, \quad \text { with } \tag{13}\\
& S_{a b}|j\rangle_{a}|k\rangle_{b}=\omega^{j k}|j\rangle_{a}|k\rangle_{b}
\end{align*}
$$

The resulting state $|\Phi\rangle_{C}=S|+\rangle$ is called the qudit cluster state. It can be shown that $|\Phi\rangle_{C}$ satisfies the following set of equations

$$
\begin{equation*}
X_{a}^{\dagger} \otimes_{b \in \mathcal{N}(a)} Z_{b}|\Phi\rangle_{C}=|\Phi\rangle_{C}, \quad(\forall) a \tag{14}
\end{equation*}
$$

Also such set of equations defines a unique cluster state.

3 The Clifford group

3.1 Brief review of the Pauli group

For one qubit, the Pauli group consists of the following operators

$$
\begin{equation*}
\mathcal{P}=\{ \pm I, \pm X, \pm Z, \pm X Z\} \tag{15}
\end{equation*}
$$

In the case of n qubits,

$$
\begin{equation*}
\mathcal{P}^{n}=\mathcal{P} \otimes \mathcal{P} \otimes \ldots \otimes \mathcal{P} \tag{16}
\end{equation*}
$$

The qudit case can be generalized similarly, i.e. the d-dimensional Pauli group for one qudit consists of all d-dimensional operators of the form

$$
\begin{equation*}
\omega^{l} X^{j} Z^{k} \tag{17}
\end{equation*}
$$

$j, k, l=0 \ldots d-1, \omega=\exp 2 \pi i / d$. The Pauli group for n qudits \mathcal{P}_{d}^{n} is defined by the following set of operators

$$
\begin{equation*}
\mathcal{P}_{d}^{n}=\left\{\omega^{l_{1}} X^{j_{1}} Z^{k_{1}} \otimes \omega^{l_{2}} X^{j_{2}} Z^{k_{2}} \otimes \ldots \otimes \omega^{l_{n}} X^{j_{n}} Z^{k_{n}}\right\} \tag{18}
\end{equation*}
$$

The basic commutation relations for the Pauli group can be written as

$$
\begin{equation*}
\left(X^{j} Z^{k}\right)\left(X^{s} Z^{t}\right)=\omega^{j t-k s}\left(X^{s} Z^{t}\right)\left(X^{j} Z^{k}\right) \tag{19}
\end{equation*}
$$

We are interested in the properties of the Pauli group under conjugation by d-dimensional unitary operators.

3.2 The Clifford group

Consider the Pauli group on n qudits, \mathcal{P}_{d}^{n}. An n-qudit unitary operation \mathcal{C} is defined to be a Clifford operation if

$$
\begin{equation*}
\mathcal{C} \mathcal{P}_{d}^{n} \mathcal{C}^{\dagger}=\mathcal{P}_{d}^{n} \tag{20}
\end{equation*}
$$

i.e. for every Pauli operation $P \in \mathcal{P}_{d}^{n}$, there is another $P^{\prime} \in \mathcal{P}_{d}^{n}$ (which may be different by P) such that $\mathcal{C} P \mathcal{C}^{\dagger}=P^{\prime}$.

Hence for every Clifford operation \mathcal{C} we can propagate Pauli operators across \mathcal{C} while \mathcal{C} stays the same (but the Pauli operators generally change). For any n qudits the Clifford operations form a group, called the Clifford group.

In the one qubit case $(n=1, d=2)$

$$
\begin{equation*}
H X=Z H, \quad H Z=X H \tag{21}
\end{equation*}
$$

so the Hadamard operator H is a Clifford operation.
Theorem: The Clifford group on n-qudits is generated by $Z, H, P_{\pi / 4}$ and Controlled-NOT acting in all combinations on any of the qubits (i.e. arbitrary arrays of these gates). Here

$$
P_{\pi / 4}=\left(\begin{array}{cc}
1 & 0 \tag{22}\\
0 & i
\end{array}\right)
$$

