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Abstract

We will discuss the extension of the notion of a graph state from qubits to general d-
dimensional qudits. Principal reference: Zhou et al., Phys. Rev. A 68 (2003) 062303.

1 Review of qubit graph states

A graph is a set of nodes, which may be joined by vertices. We assume that there are no loops
and that the graph is non-directional.

A graph state is obtained in the following way: replace the nodes with qubits, initially
in the |+〉 state; apply a controlled-phase gate for each pair of directly joined qubits. In the
computational basis the controlled-phase (CP) gate is defined as

CP |jk〉 = (−1)jk|jk〉 (1)

where j, k ∈ {0, 1}. The resulting state is called a graph state.

2 The qudit case

2.1 Some definitions

Now we consider a d-level quantum system. We would like to generalize the qubit results to
this more general case. The ideas are similar. Let H be the Hilbert space of the system. The
computational basis is denoted by {|0〉, |1〉, ..., |d− 1〉}. Now X and Z operators are defined as

X|k〉 = |k ª 1〉 (2)

Z|k〉 = ωk|k〉 (3)

where ω = exp(2πi/3).
In the computational basis X and Z are represented as

Z =




1 0 0 . . . 0
0 ω 0 . . . 0
0 0 ω2 . . . 0
...

...
...

. . .
...

0 0 0 . . . ωd




(4)

X =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0




(5)
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We can define now the Fourier transform of the computational basis

|j〉 =
1√
d

d−1∑

k=0

ωjk|k〉 (6)

One can easily check that
X|j〉 = ωj |j〉
Z|j〉 = |j + 1〉 (7)

The following commutation relations hold

XjZk = ωjkZkXj (8)

By a proper redefinition of X and Z, one can simplify the above commutation relation

XZ = ωZX, (9)

where
Z = ω−

d−1
2 m1n1Zm1Xn1

X = ω−
d−1
2 m2n2Zm2Xn2

(10)

with m1, n1,m2, n2 chosen such that (m1, n1) = 1, (m2, n2) = 1 and m1n2 −m2n1 = 1.
Z and X can simultaneously be written as

Z = UZU†, X = UXU† (11)

2.2 The preparation of the graph state

We now restrict to one-dimensional clusters.

1. Step 1: Prepare each qudit in the state

|+〉 =
N⊗

a=1

|0〉a (12)

2. Step 2: Apply a generalized controlled-phase gate defined by

S =
∏

b∈N (a) Sab, with
Sab|j〉a|k〉b = ωjk|j〉a|k〉b (13)

The resulting state |Φ〉C = S|+〉 is called the qudit cluster state. It can be shown that
|Φ〉C satisfies the following set of equations

X†
a ⊗b∈N (a) Zb|Φ〉C = |Φ〉C , (∀)a (14)

Also such set of equations defines a unique cluster state.

3 The Clifford group

3.1 Brief review of the Pauli group

For one qubit, the Pauli group consists of the following operators

P = {±I,±X,±Z,±XZ} (15)

In the case of n qubits,
Pn = P ⊗ P ⊗ . . .⊗ P (16)
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The qudit case can be generalized similarly, i.e. the d-dimensional Pauli group for one qudit
consists of all d-dimensional operators of the form

ωlXjZk (17)

j, k, l = 0 . . . d− 1, ω = exp 2πi/d. The Pauli group for n qudits Pn
d is defined by the following

set of operators
Pn

d = {ωl1Xj1Zk1 ⊗ ωl2Xj2Zk2 ⊗ . . .⊗ ωlnXjnZkn} (18)

The basic commutation relations for the Pauli group can be written as

(XjZk)(XsZt) = ωjt−ks(XsZt)(XjZk) (19)

We are interested in the properties of the Pauli group under conjugation by d-dimensional
unitary operators.

3.2 The Clifford group

Consider the Pauli group on n qudits, Pn
d . An n-qudit unitary operation C is defined to be a

Clifford operation if
CPn

d C† = Pn
d (20)

i.e. for every Pauli operation P ∈ Pn
d , there is another P

′ ∈ Pn
d (which may be different by P )

such that CPC† = P
′
.

Hence for every Clifford operation C we can propagate Pauli operators across C while C stays
the same (but the Pauli operators generally change). For any n qudits the Clifford operations
form a group, called the Clifford group.

In the one qubit case (n = 1, d = 2)

HX = ZH, HZ = XH (21)

so the Hadamard operator H is a Clifford operation.
Theorem: The Clifford group on n-qudits is generated by Z, H, Pπ/4 and Controlled−NOT

acting in all combinations on any of the qubits (i.e. arbitrary arrays of these gates). Here

Pπ/4 =
(

1 0
0 i

)
. (22)
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