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Abstract

We will discuss the extension of the notion of a graph state from qubits to general d-
dimensional qudits. Principal reference: Zhou et al., Phys. Rev. A 68 (2003) 062303.

1 Review of qubit graph states

A graph is a set of nodes, which may be joined by vertices. We assume that there are no loops
and that the graph is non-directional.

A graph state is obtained in the following way: replace the nodes with qubits, initially
in the |+) state; apply a controlled-phase gate for each pair of directly joined qubits. In the
computational basis the controlled-phase (CP) gate is defined as

CPljk) = (=1)%|jk) (1)

where j,k € {0,1}. The resulting state is called a graph state.

2 The qudit case

2.1 Some definitions

Now we consider a d-level quantum system. We would like to generalize the qubit results to
this more general case. The ideas are similar. Let H be the Hilbert space of the system. The
computational basis is denoted by {|0),]1),...,|d — 1)}. Now X and Z operators are defined as

X[k) =[ko1) (2)

Z|k) = " k) (3)

where w = exp(27i/3).
In the computational basis X and Z are represented as

1 0 0 0
0 w 0 0
Z:OOw2 0 (4)
00 0 w?
01 0 0
001 ...0
X=|: : 5)
000 1
1 00 0



We can define now the Fourier transform of the computational basis

_ 1 4=
j) = T 2= *|k)
k=0
One can easily check that
Xj) = w’]5)
Zlj) =13 +1)

The following commutation relations hold
X' ZF = witZk X7
By a proper redefinition of X and Z, one can simplify the above commutation relation
XZ =wZX,
where
7 = w= T mm gmi xm

d—1

X = w5 manz zma xn2

with my,n1,ma, ny chosen such that (m1,n1) =1, (m2,n2) =1 and myins — mang = 1.
7 and X can simultaneously be written as

Z=UzU', X =UXU?

2.2 The preparation of the graph state

‘We now restrict to one-dimensional clusters.

1. Step 1: Prepare each qudit in the state

2. Step 2: Apply a generalized controlled-phase gate defined by

S = Hbe./\/(a) qu, with
Sab‘j>a|k>b = ij‘j>a|k>b

(11)

(12)

(13)

The resulting state |®)c = S|+) is called the qudit cluster state. It can be shown that

|®) ¢ satisfies the following set of equations
X! ®pen(a) Zo|®)c = @), (V)a

Also such set of equations defines a unique cluster state.

3 The Clifford group

3.1 Brief review of the Pauli group

For one qubit, the Pauli group consists of the following operators
P={xl,+X,+7Z,+X7}

In the case of n qubits,
Pr=PP®...QP

(14)



The qudit case can be generalized similarly, i.e. the d-dimensional Pauli group for one qudit
consists of all d-dimensional operators of the form

w'xIZ* (17)

Jik,l=0...d—1, w=-exp2mi/d. The Pauli group for n qudits P} is defined by the following
set of operators 4 ' '

Py = {wh X1 ZM @l X7k @ .. @ w Xz} (18)
The basic commutation relations for the Pauli group can be written as

(XIZF)\ (X571 = wit=ks (X 28 (XTI ZF) (19)

We are interested in the properties of the Pauli group under conjugation by d-dimensional
unitary operators.

3.2 The Clifford group

Consider the Pauli group on n qudits, P}. An n-qudit unitary operation C is defined to be a
Clifford operation if
CPyCt =Py (20)

i.e. for every Pauli operation P € P7, there is another P € Py (which may be different by P)
such that CPCt = P'.

Hence for every Clifford operation C we can propagate Pauli operators across C while C stays
the same (but the Pauli operators generally change). For any n qudits the Clifford operations
form a group, called the Clifford group.

In the one qubit case (n =1, d = 2)

HX =ZH, HZ=XH (21)

so the Hadamard operator H is a Clifford operation.
Theorem: The Clifford group on n-qudits is generated by Z, H, Py /4 and Controlled—NOT
acting in all combinations on any of the qubits (i.e. arbitrary arrays of these gates). Here

Pm:((l) ?) (22)



