Decoherence Free Subspace & Noiseless Subsystem by example

Shiang Yong LOOI
Carnegie Mellon University
11th Jun 2009
References

Overview

1) Decoherence Free Subspace
2) Random Rotation Decoherence Model
3) Noiseless Subsystem
DFS

In QEC, we typically have

\[\rho \xrightarrow{E} R \xrightarrow{\mathcal{R} \circ \mathcal{E}(\rho)} \]

For a given noise model, we would like to be able to undo the noise.
In QEC, we typically have

\[\rho \xrightarrow{\mathcal{E}} \mathcal{R} \xrightarrow{\mathcal{R} \circ \mathcal{E}(\rho)} \]

Want to find set of states and decoding for which the following holds

\[\mathcal{R} \circ \mathcal{E}(\rho) = \rho \]
DFS

DFSs are defined as QEC codes where the decoding operation is not necessary.

\[\rho \xrightarrow{\mathcal{E}} \mathcal{E}(\rho) \]

We want to find set of states satisfying

\[\mathcal{E}(\rho) = \rho \]
Example of DFS. Say we have phase noise

\[|0\rangle \xrightarrow{\mathcal{E}} |0\rangle \quad |1\rangle \xrightarrow{\mathcal{E}} e^{i\phi} |1\rangle \]

Use this two qubit encoding

\[|0_L\rangle = |01\rangle \quad |1_L\rangle = |10\rangle \]

\[\alpha |0_L\rangle + \beta |1_L\rangle \xrightarrow{\mathcal{E}} e^{i\phi} (\alpha |0_L\rangle + \beta |1_L\rangle) \]
Random Rotation

Say we have a spin-$\frac{1}{2}$ particle

$$|J = \frac{1}{2}, m\rangle \rightarrow e^{-i\vec{J} \cdot \hat{n}} |J = \frac{1}{2}, m\rangle$$

where \hat{n} is a random vector.

Then can we find a DFS for this noise?
Random Rotation

We know if we have two spin-$\frac{1}{2}$ particles and we look at the singlet state

$$J^2 |s\rangle = 0$$
Random Rotation

We know if we have **two** spin-\(\frac{1}{2} \) particles and we look at the singlet state

\[
J^2 |s\rangle = 0
\]
\[
J_x |s\rangle = 0
\]
\[
J_y |s\rangle = 0
\]
\[
J_z |s\rangle = 0
\]
Random Rotation

We know if we have two spin-$\frac{1}{2}$ particles and we look at the singlet state

\[J^2 |s\rangle = 0 \]
\[J_x |s\rangle = 0 \]
\[J_y |s\rangle = 0 \]
\[J_z |s\rangle = 0 \]

Therefore \(e^{-i\vec{J} \cdot \hat{n}} |s\rangle = ? \)
Random Rotation

We know if we have two spin-$\frac{1}{2}$ particles and we look at the singlet state

\[J^2 \ket{s} = 0 \]
\[J_x \ket{s} = 0 \]
\[J_y \ket{s} = 0 \]
\[J_z \ket{s} = 0 \]

Therefore \(e^{-i \vec{J} \cdot \hat{n}} \ket{s} = \ket{s} \) for any \(\hat{n} \)
Random Rotation

The other triplet states $|t_-, t_0, t_+\rangle$ do not have the same property.

The rotation operator will mix them up. But will remain in the triplet subspace.

So the singlet spans a one-dimensional DFS. What is it good for?

How to get a two-dimensional DFS?
Random Rotation

To get a useful DFS we need four spin-$\frac{1}{2}$ particles.

We usually write $|s\rangle = |J = 0, m = 0\rangle$

$|0_L\rangle = |J = 0, m = 0; \lambda = 0\rangle$

$= |s\rangle |s\rangle$

$|1_L\rangle = |J = 0, m = 0; \lambda = 1\rangle$

$= \frac{1}{\sqrt{3}} (|t_+\rangle |t_-\rangle + |t_-\rangle |t_+\rangle$

$- |t_0\rangle |t_0\rangle)$
Random Rotation

Another nicer choice of basis

\[|0_L\rangle = \frac{1}{\sqrt{6}} \left[\omega \left(|1001\rangle + |0110\rangle \right) \right. \]
\[+ \omega^2 \left(|0101\rangle + |1010\rangle \right) \]
\[+ |0011\rangle + |1100\rangle \left] \right. \]
\[\omega = e^{2\pi i / 3} \]

\[|1_L\rangle = \frac{1}{\sqrt{6}} \left[\omega^2 \left(|1001\rangle + |0110\rangle \right) \right. \]
\[+ \omega \left(|0101\rangle + |1010\rangle \right) \]
\[+ |0011\rangle + |1100\rangle \left] \right. \]
Random Rotation

Can we construct a DFS with only three spin-$\frac{1}{2}$ particles?

We want to find a two-dimensional subspace such that

\[e^{-i \vec{J} \cdot \hat{n}} |0_L\rangle = |0_L\rangle \]
\[e^{-i \vec{J} \cdot \hat{n}} |1_L\rangle = |1_L\rangle \]

It does not exist!
Noiseless Subsystem

Let’s define subsystem first.

If we have $\mathcal{H} = A \oplus B$, then we say A is a subspace.

If we have $\mathcal{H} = (A \otimes B)$, then we say A is a subsystem.

If we have $\mathcal{H} = (A \otimes B) \oplus \mathcal{K}$, then we say A is a subsystem.

All subspaces are subsystems.
Noiseless Subsystem

Decoherence free subsystem = noiseless subsystem

Recall for DFS we have $\mathcal{E}(\rho) = \rho$. For NS we have

$\mathcal{E}(\rho \otimes \sigma) = \rho \otimes \sigma'$
Noiseless Subsystem

Claim: There is a noiseless subsystem in three spin-$\frac{1}{2}$ particles.

Consider the irreps of rotation group.

\[2 \otimes 2 \cong 2 \otimes 2 \cong 1 \oplus 3 \]
Noiseless Subsystem

Claim: There is a noiseless subsystem in three spin-$\frac{1}{2}$ particles.

Consider the irreps of rotation group.

\[
2 \otimes 2 \simeq 2 \otimes 2 \simeq 1 \oplus 3 \\
2 \otimes 3 \simeq 2 \otimes 2 \otimes 2 \simeq (1 \oplus 3) \otimes 2
\]
Noiseless Subsystem

Claim: There is a noiseless subsystem in three spin-$\frac{1}{2}$ particles.

Consider the irreps of rotation group.

\[
2 \otimes^2 \cong 2 \otimes 2 \cong 1 \oplus 3
\]

\[
2 \otimes^3 \cong 2 \otimes^2 \otimes 2 \cong (1 \oplus 3) \otimes 2 \\
\cong (1 \otimes 2) \oplus (3 \otimes 2)
\]
Noiseless Subsystem

Claim: There is a noiseless subsystem in three spin-$\frac{1}{2}$ particles.

Consider the irreps of rotation group.

\[
2 \otimes 2 \cong 2 \otimes 2 \cong 1 \oplus 3
\]

\[
2 \otimes 3 \cong 2 \otimes 2 \otimes 2 \cong (1 \oplus 3) \otimes 2
\]

\[
\cong (1 \otimes 2) \oplus (3 \otimes 2)
\]

\[
\cong 2 \oplus 2 \oplus 4
\]
Noiseless Subsystem

We see there are two spin-$\frac{1}{2}$ subspaces.

\[|m = +\frac{1}{2}; \lambda = 0 \rangle = \frac{1}{\sqrt{3}} \left(|001 \rangle + \omega |010 \rangle + \omega^2 |100 \rangle \right) \]
\[|m = -\frac{1}{2}; \lambda = 0 \rangle = \frac{1}{\sqrt{3}} \left(|110 \rangle + \omega |101 \rangle + \omega^2 |011 \rangle \right) \]
\[|m = +\frac{1}{2}; \lambda = 1 \rangle = \frac{1}{\sqrt{3}} \left(|001 \rangle + \omega^2 |010 \rangle + \omega |100 \rangle \right) \]
\[|m = -\frac{1}{2}; \lambda = 1 \rangle = \frac{1}{\sqrt{3}} \left(|110 \rangle + \omega^2 |101 \rangle + \omega |011 \rangle \right) \]

\[\omega = e^{2\pi i / 3} \]
Noiseless Subsystem

We observe that

$$|m = +\frac{1}{2}; \lambda = 0\rangle = \frac{1}{\sqrt{3}} \left(|001\rangle + \omega |010\rangle + \omega^2 |100\rangle \right)$$

$$|m = -\frac{1}{2}; \lambda = 0\rangle = \frac{1}{\sqrt{3}} \left(|110\rangle + \omega |101\rangle + \omega^2 |011\rangle \right)$$

$$J_x |m = +\frac{1}{2}; \lambda = 0\rangle = |m = -\frac{1}{2}; \lambda = 0\rangle$$

$$J_z |m = +\frac{1}{2}; \lambda = 0\rangle = +\frac{1}{2} |m = +\frac{1}{2}; \lambda = 0\rangle$$

So the angular momentum operators do not change the degeneracy quantum number.
Noiseless Subsystem

To “see” the subsystem, we adopt the following perspective

$$|m; \lambda\rangle = |m\rangle \otimes |\lambda\rangle$$

$$J_x = S_x \otimes 1_\lambda$$

$$J_y = S_y \otimes 1_\lambda$$

$$J_z = S_z \otimes 1_\lambda$$

We store the qubit in the \(\lambda \) degeneracy subsystem.
Noiseless Subsystem

\[|0\rangle_1 \]
\[|0\rangle_2 \]
\[|\psi_{in}\rangle_3 \]

\[U_1 = \frac{-1}{\sqrt{2}} \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix} \]
\[U_2 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & -\sqrt{2} \\ \sqrt{2} & 1 \end{bmatrix} \]
\[U_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} \omega & -\omega \\ \omega^2 & \omega^2 \end{bmatrix} \]
Noiseless Subsystem

There is a two-dimensional NS in three spin-$\frac{1}{2}$ particles.

In Ref. [3], it was shown that there exists an $(N-1)$-dimensional NS in N spin-$\frac{1}{2}$ particles.

This means in the system of four spin-$\frac{1}{2}$ particles, there is a qutrit NS.
References

