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1 Fully Entangled States

• As previously noted, entangled states on a tensor product are peculiarly quantum in the sense that
there is no good classical analog for them. Dense coding and teleportation are two processes which make use
of entangled states, and for this reason appear somewhat strange from an everyday “classical” perspective.

⋆ We shall later introduce a measure of entanglement for pure states, but for the moment all we need are
fully entangled (or maximally entangled) states. Let Ha and Hb be two Hilbert spaces of the same dimension
da = db = d. Any state on |Ψ〉 on H = Ha ⊗Hb can be written in the Schmidt form:

|ψ〉 =
∑

j

λj |aj〉 ⊗ |bj〉, (1)

where {|aj〉} and {|bk〉} are suitable orthonormal bases (which depend upon |ψ〉).
• A fully entangled state is one for which all the λ are equal (or equal in magnitude if one does not

impose the condition λj > 0), and thus equal to 1/
√
d if |ψ〉 is normalized.

• In the case of two qubits, d = 2, the Bell states

|B0〉 =
(

|00〉 + |11〉
)

/
√

2,

|B1〉 =
(

|01〉 + |10〉
)

/
√

2,

|B2〉 =
(

|00〉 − |11〉
)

/
√

2,

|B3〉 =
(

|01〉 − |10〉
)

/
√

2,

(2)

are examples of fully-entangled states which form an orthonormal basis.

⋆ Fully entangled states can also be characterized in the following way. Let the reduced density operators
for a normalized |ψ〉 on Ha and Hb be defined in the usual way:

ρa = Trb([ψ]), ρb = Tra([ψ]). (3)

For a fully entangled state,
ρa = I/d = ρb. (4)
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◦ Note that we are assuming that the reduced density matrices come from a pure state |ψ〉 on Ha ⊗Hb,
and not from a mixed state represented by a density operator. (Entanglement for mixed states is a complex
problem which is far from well understood at the present time.)

2 Exercise. Show that only one of the equalities in (4) is actually needed, as the second is a consequence
of the first (and vice versa).

⋆ Fully entangled states do not have a unique Schmidt decomposition. Given any orthonormal basis
{|aj〉} of Ha, there is an orthonormal basis {|bk〉} of Hb, one that depends both on {|aj〉} and on |ψ〉, such

that (1) holds (with λj = 1/
√
d).

2 Exercise. Prove this assertion by expanding |ψ〉 in the form
∑

j |aj〉 ⊗ |βj〉, and using (4).

⋆ Given two normalized fully entangled states |ψ〉 and |φ〉 on Ha ⊗ Hb one can always find unitary
operators U and V on Ha and Hb such that

|φ〉 = (U ⊗ V )|ψ〉. (5)

• That there is some unitary operator W on Ha⊗Hb mapping |ψ〉 to |φ〉 is a consequence of the fact that
they have the same norm. What is special about (5) is that W is of the form U ⊗ V . It will be convenient
to refer to call such an operator a local unitary. The idea of “local” is that one thinks of the subsystems Ha

and Hb as located in two separate laboratories where Alice applies U to the first and Bob applies V to the
second system.

2 Exercise. Another class of pure states mapped into each other by local unitaries are the (normalized)
product states. Can you think of other classes? What is the most general class? [Hint: Schmidt.]

⋆ For any da = db = d ≥ 2 one can find an orthonormal basis for Ha ⊗Hb consisting of fully entangled
states, analogous to the Bell basis in (2). These bases are not unique, there are always many possibilities.

⋆ If the dimensions da and db are unequal, one cannot have a fully entangled state of the form defined
above, because the number of nonzero Schmidt coefficients can at most be the smaller of da and db. However,
one can have a maximally entangled state where, for example, if da < db, then da of the Schmidt coefficients
are equal to each other (or equal in magnitude).

• Sometimes it is helpful to define a uniformly entangled state as one in which all the nonzero Schmidt
coefficients are equal (or of the same magnitude).

2 Dense Coding

⋆ The phenomenon of “dense coding” is based on the observation that given some state belonging to
the Bell basis (2) there are local unitaries on Ha which will map it onto any of the other states belonging to
the basis, apart from an overall phase. There are similar unitaries on Hb.

◦ Thus if we start with |B0〉, it is mapped to |B1〉 by X⊗ I, to |B2〉 by Z⊗ I, and to |B3〉 (up to a phase)
by Y ⊗ I.

• As a consequence, given an entangled state |Bj〉 shared between Alice’s and Bob’s laboratories, either
one of them can convert it into another basis state |Bk〉 by applying an appropriate unitary.

• On the other hand, neither of them can determine by local measurements, i.e., entirely by measurements
on Ha, or entirely by measurements on Hb, which |Bj〉 they jointly possess.

2 Exercise. Discuss why this is so. [Hint. Suppose Alice carries out measurements in some orthonormal
basis of Ha. What will be the probabilities of the outcomes?]

• If they both carry out measurements and compare them using a classical channel (telephone) they
can make some distinctions. For example, measurements in the standard basis when compared with each
other will distinguish |B0〉 from |B1〉 and |B3〉, but not from |B2〉. To carry out a measurement in the Bell
basis requires either bringing the qubits together, or else doing something like teleportation, which requires
another qubit pair in a known Bell (or other fully entangled) state.

• A convenient way of imagining how one of the |Bj〉 might be shared by Alice and Bob is to suppose
that Bob produces it in some Ha ⊗Hb system in his laboratory (e.g., by photon down conversion), and then
ships the Ha part to Alice over a perfect quantum channel. Putting Ha inside a carefully constructed box
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so that it will not be disturbed, and sending the box to Alice by parcel service, is to be thought of as a
quantum channel — though not a very practical one, given current technology. It is more realistic to imagine
an optical fiber between the laboratories, and sending one of two down-converted photons through the fiber.

⋆ The protocol for dense coding is illustrated in the following figure, which shows a quantum circuit
with parts in Alice’s (upstairs) and Bob’s (basement) laboratories.

t0 t1 t2 t3 t4 t5 t6 t7 t8

Z
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|ā〉

|a〉

|ā〉

|a〉
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ā

b

c
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Figure 1: Circuit for dense coding.

• The part of the circuit preceding t2 is simply a device to turn the product state |00〉 of two qubits b
and c in Bob’s laboratory into the entangled Bell state |B0〉. The b qubit is then shipped upstairs to Alice.
(Alternatively, Alice could produce the entangled bc pair in her laboratory and ship c downstairs to Bob.)

• Alice then carries out one of four unitary operations on qubit b which either leave the bc combination
in |B0〉 or map it into one of the |Bj〉 with j > 0. Whereas one could imagine Alice doing this by hand, the
figure shows a quantum circuit in which the unitary is controlled by two qubits a and ā, which are initially in
one of the four standard basis states |00〉, |01〉, |10〉, |11〉 corresponding to the four possible messages which
Alice can transmit to Bob by this means.

• At t5 qubit b is shipped back to Bob. The circuit in his lab following t6 is just the mirror image of the
one used to produce |B0〉 in the first place, and its purpose is to measure which Bell state the bc pair is in.
The result of the measurement will be two qubits whose states, as indicated in the diagram, are the same as
Alice’s input, assuming always that both |a〉 and |ā〉 are initially either |0〉 or |1〉.

2 Exercise. What happens if one chooses initial |a〉 = |x+〉 = |+〉 and initial |ā〉 = |0〉? What state
results at t8 from unitary time evolution? Suppose at this time the four qubits are measured in the standard
basis; what will one find?

⋆ What makes this process seem paradoxical, and gives rise to the name “dense coding”, is the fact
that only one qubit, b, passes from Alice’s laboratory to Bob’s during the time interval between Alice’s
preparation and Bob’s measurement. On the other hand, two bits of information needed to identify one out
of four possible messages have somehow passed between them. To put it another way, if there were only a
one bit classical channel between Alice and Bob, it would have to be used twice to get the message through,
whereas the quantum channel is only used once, at least if we ignore what happened before t3.

◦ In summary, it looks as if a single qubit can carry two bits of classical information!

• But closer inspection shows that things are not quite so simple. Let us imagine, for example, that qubit
b was captured by some outsider (traditionally know as an eavesdropper, or Eve) who wanted to listen in on
the message between Alice and Bob. What could she learn about the values of a and ā from measuring or
carrying out other operations on b? Absolutely nothing. From this point of view one might argue that rather
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than two bits of information, qubit b contains no information (of the relevant sort) at all! In the same way
one can show that qubit c by itself contains no information about a and ā before t6 when the measurement
occurs. Thus in some sense it is only the combined system of b along with c that “contains” or “carries” the
information; one can say that the information resides in correlations between these qubits.

2 Exercise. Show that no information is present in either qubit b or qubit c separately at the time t5,
by computing the reduced density operator of each qubit and showing that it is independent of a and ā.

⋆ Some insight into what is going on is provided by the following analogy. Imagine that the quantum
channel between Alice and Bob is replaced by a classical channel, which I like to think of as a pipe which
can carry colored slips of paper. In the basement Bob has a machine which puts out two slips of paper of
the same color, red(R) or green (G) in a random fashion, such that RR or GG is produced with probability
1/2. The first slip is sent upstairs to Alice, who sends a message back to Bob in the following fashion. For 0,
she returns a slip with the same color, and for 1 she returns a slip with the opposite color (G if she received
R, R if she received G). Bob reads the message by comparing the color of the slip in his possession with the
one sent back by Alice: if they are the same that signifies 0, if they are different that means 1.

• The main point of this analogy is that it shows how the message is stored in correlations rather than
in individual slips of paper. If Eve steals the slip which Alice is sending back to Bob, she will learn nothing
about the message, for the probability that it will be red or green is 1/2, independent of whatever message
Alice decided to send.

◦ There is actually a closer connection between this analogy and the quantum circuit in Fig. 1 than one
might at first suppose; there is a way of describing the quantum process using a particular consistent family
of histories which makes it look “almost” like the classical situation just described. (Details are given in
Sec. V of NLQI.)

⋆ However, in the classical case Alice can only send one bit of information per slip of paper, whereas in
the quantum case she can send two bits per qubit, so there is still a quantum mystery.

• One way of viewing the mystery is to recall that, Sec. 1, the Bell basis has the property that given an
initial state is one of the Bell basis states, Alice herself, with no help from Bob, can transform it to any one
of the other three basis states.

◦ Contrast this with what happens when one uses a basis of product states such as the standard basis
|00〉, |01〉, |10〉, |11〉. Here it is obvious that there is no way by which Alice by herself can change |00〉 (for
example) into each of the other basis states. She can only reach one other basis state, not all three.

• Consequently, Alice can put two bits of information into the two qubit system bc if it starts off in
a fully-entangled state, but only one bit of information if it starts off in a product state. The latter is
what corresponds best with our “classical” experience of the world, and that is one reason we find quantum
entanglement peculiar and perplexing.

⋆ Dense coding can be generalized in an obvious way to systems with d > 2. A total of d2 different
messages can be sent through a d-dimensional quantum channel, provided Alice and Bob share a fully-
entangled state to begin with.

3 Teleportation

⋆ Teleportation resembles dense coding in that it requires the presence of a fully entangled state at the
outset. However, its goal is basically different: rather than send a larger-than-expected amount of classical
information over a quantum channel, the idea is to send a quantum state over a classical channel.

• Figure 10.2 shows the basic arrangement for teleportation in the form of a circuit. As in Fig. 1, the
elements preceding t2 create an entangled state |B0〉 on qubits b and c, and the b qubit is sent to Alice’s lab
over a quantum channel. Next Carol brings to Alice a state |ψ〉 to be teleported to Carol’s associate Charlie,
who is waiting in Bob’s laboratory.

• The circuit in Alice’s laboratory between t3 and t5 followed by the standard-basis detectors Da and Db

serves to measure the system consisting of qubits a and b in the Bell basis. Note that this is basically the
same arrangement as one finds in Fig. 1 following t6 (where the detectors are not shown) and its purpose is
the same.
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Figure 2: Teleportation.

• The outcomes of the measurements are “classical” signals, shown as heavy lines, which can be trans-
mitted to Bob over a classical channel, for example, an ordinary phone line. At this point Bob carries out
a unitary transformation on qubit c, the nature of which is determined by the message received from Alice.
The figure shows an automated version: if Db = 1, an X or “not” operation is performed on c, and if Da = 1
a Z or “phase” operation is performed on c, whereas if Da or Db is 0 the corresponding operation is not
carried out.

⋆ The net result is that after these operations qubit c, which Bob hands to Charlie, is in the same state
|ψ〉 as the qubit a which Carol brought to Alice. This is the sense in which the quantum state |ψ〉 has been
teleported with the help of two classical bits of information, the outcomes of the Da and Db measurements,
and without the need for a “real” quantum channel from Alice to Bob.

◦ Things are, of course, not quite that simple, for a quantum channel was needed to set up the entangled
bc state essential for teleportation. However, this was used earlier, possibly even before Carol created the
state |ψ〉 to bring to Alice. One can well imagine that even if a good quantum channel were available to
Bob and Alice, it might be advantageous to employ it to produce a collection of pairs of entangled qubits
on weekends when the rates are low, and then teleport using a classical channel during the week. Or,
teleportation might be reserved for use in an emergency when one needs to transmit a quantum state, but
the quantum channel has broken down. (To be sure, using current technology it is not possible to preserve a
pair of qubits in a fully entangled state for any significant length of time, but we must leave a few problems
to future generations of engineers.)

• Carol and Charlie can check whether the claim of Alice and Bob to be operating a good teleporting
service is correct. Carol creates various different 1-qubit states which she brings to Alice, and Charlie
measures the states received from Bob in the |ψ〉, |ψ̃〉 basis, where |ψ̃〉 is the state orthogonal to |ψ〉. The
outcome of one successful measurement could be an accident, but if things work in, say, 20 cases, this is
some evidence that teleportation is taking place.

◦ Teleportation Ltd., the firm that employs Alice and Bob, will not guarantee a perfect quantum channel,
but instead promises to achieve a certain fidelity F or error rate ǫ, such as ǫ < 0.01, or F > 0.99.

⋆ Alice and Bob both know the outcomes of the Bell-state measurements, i.e., the values of Da and Db

in any particular case in which teleportation is employed, and one might suppose that this would provide
them some information about the state |ψ〉 supplied by Carol. However, this is not at all the case: for a
given |ψ〉, the Da and Db outcomes are completely random: each of the four possibilities for (Da, Db) occurs
with a probability of 1/4.

• This is an example of a very general principle in quantum information which goes under the name of
no cloning or no copying, see Sec. 4. The basic idea is that a quantum channel cannot be “split” into two
or more channels without introducing some noise. Consequently, if the channel from a at t1 to c at t8 in
Fig. 2 is a perfect channel, it is not possible for information about |ψ〉 at t8 to be available anywhere except
in qubit c itself. The outcome of the Da and Db measurements could be in Alice’s notebook (for example),
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and therefore cannot possibly tell one anything about |ψ〉.
⋆ In understanding how the circuit in Fig. 2 functions, it can be helpful to replace it with the one shown

in Fig. 3, which has no “classical” elements up to time t8. By consistent histories arguments, or by the
“principle of deferred measurements” in QCQI (p. 186), one can show that the final results (Da, Db, and
|ψ〉) are the same.
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c

Figure 3: Alternative teleportation circuit.

• Here detection takes place after t8, and so far as “teleportation” is concerned, nothing would change if
there were no detectors: the outcomes obviously do not influence qubit c.

◦ However, carrying out the two operations between t6 and t8 requires appropriate “connections” between
Alice’s and Bob’s laboratory, and these, in turn, necessitate using a quantum channel. This undermines the
original idea of teleportation, which was to construct a quantum channel without having to use a quantum
channel! We introduce the circuit in Fig. 3 not as a “practical” replacement for that in Fig. 2, but as an aid
to understanding.

2 Exercise. Assume a general initial state |ψ〉 = α|0〉+β|1〉, and work out the unitary time development
of the three qubits in Fig. 3, starting with |Ψ2〉 = |ψ〉 ⊗ |B0〉 at t2. In particular obtain |Ψ5〉 and |Ψ8〉 at
times t5 and t8.

a) Show that |Ψ8〉 is a product state. Then argue that it has to be of the form |ab〉⊗ |c〉 if the c output is
to be the same as the a input. Can you see from |Ψ8〉 why the outcomes of Da and Db provide no information
about |ψ〉?

b) Expand |Ψ5〉 in the form
∑

j,k |j〉 ⊗ |k〉 ⊗ |cjk〉, i.e., find the kets |cjk〉. Use these to explain why the
circuit in Fig. 2 is successful.

c) Show that at time t6 in Fig. 3 the information about |ψ〉 is contained in qubits a and b in the sense
that it could be recovered from them by modifying the circuit at later times. (This is in contrast with
the situation at t6 in the circuit in Fig. 2, where information about |ψ〉 is not present in the classical bits
representing the measurement outcomes.)

⋆ If the two “classical” bits representing the measurement outcomes in Fig. 2 contain no information
about |ψ〉, where is that information at, say, t6? Is it in qubit c? But how can that be, given that the results
of the measurements on a and b have yet to reach Bob’s laboratory?

• See NLQI Sec. VII for a discussion of these questions. The brief answer is that the information is
present in correlations between the Da and Db outcomes and the qubit c, the nature of which will be evident
if you did part (b) of the preceding exercise. There is nothing particularly weird or obscure going on — in
particular, there are no magical long-range influences at work — for one can construct a classical analogy
for such correlations, as explained in NLQI.

⋆ In what sense is quantum information, in contrast to classical information, teleported?

• If one were simply concerned with the question of whether a qubit is in the state |ψ〉 rather than the
orthogonal |ψ̃〉, this type of information can be transmitted in a classical fashion by the simple device of
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measuring the qubit in the |ψ〉, |ψ̃〉 basis, and sending the information over a classical channel.

• What the teleportation circuit allows one to do is to transmit an unknown quantum state without
actually determining what it is.

• Think of the simple perfect quantum channel produced by sending a spin-half particle through a good
pipe, or a polarized photon through a good optical fiber. What happens is that whatever goes in comes out
again, independent of what it is that goes in.

• In some sense the issue is not “quantum information”, but the ability to use one circuit or piece of
apparatus to transmit the “classical information” distinguishing |ψ〉 from |ψ̃〉 for many different possible
choices of |ψ〉, when the choice is not specified in advance. That is what distinguishes a quantum channel
from its classical counterpart.

4 No Cloning

⋆ There is a sense in which quantum information cannot be perfectly copied or “cloned”, and this is
expressed in various no-cloning theorems.

• The simplest example is illustrated in the following figure, where Ha and Hb have the same dimension,
but are otherwise arbitrary.

|ψ〉 |ψ〉

|ψ〉|b〉

Ha

Hb

T

Figure 4: Hypothetical cloning machine.

• Suppose that T and |b〉 are fixed, while |ψ〉 can be varied. For a particular |ψ〉 one can always find a
unitary T such that T

(

|ψ〉 ⊗ |b〉
)

is equal to |ψ〉 ⊗ |ψ〉. But there is no fixed T that will accomplish this for
all possible inputs.

• The argument is straightforward. Suppose the copying circuit can be made to work for two nonorthog-
onal normalized states |ψ′〉 and |ψ′′〉, and assume that |b〉 is normalized. Then we have

T
(

|ψ′〉 ⊗ |b〉
)

= eiφ′ |ψ′〉 ⊗ |ψ′〉,
T

(

|ψ′′〉 ⊗ |b〉
)

= eiφ′′ |ψ′′〉 ⊗ |ψ′′〉,
(6)

where we have allowed for phases φ′ and φ′′, which do not affect the physical interpretation of the final
states. Take the inner product of the first of these equations with the second, and use the fact that T †T = I.
The result is

〈ψ′|ψ′′〉 = ei(φ′′−φ′)
(

〈ψ′|ψ′′〉
)2
, (7)

and upon taking the absolute value of both sides,

|〈ψ′|ψ′′〉| = |〈ψ′|ψ′′〉|2. (8)

• This last equation has two solutions: either |〈ψ′|ψ′′〉| is equal to 0 or it is equal to 1. In the first case
the two states are orthogonal, and in the second, since we have assumed that both of them are normalized,
they are identical apart from a phase factor. (See the exercise following (12).) Both are excluded by our
definition of the term “nonorthogonal.”

• Conclusion: There is no quantum copying machine that can make two perfect copies (or one perfect
copy plus a remaining perfect original) of two (or more) nonorthogonal states.

◦ Notice the qualification. There is no rule against making as many perfect copies as one wants of
mutually orthogonal states using a quantum copying machine. Since any two macroscopically distinct states
of the world correspond to orthogonal quantum states, there is no similar restriction on copying “classical”
objects. Quantum physics is no threat to ordinary photocopying.
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⋆ A second no-cloning result can be obtained by a slight modification of the above argument. Once
again, imagine a quantum system with time development given by a unitary operator T acting on a tensor
product space Ha⊗Hc, where Ha is of dimension 2 (one qubit), whereas Hc is of arbitrary size, and suppose
that

|Ψ′〉 := T
(

|ψ′〉 ⊗ |c〉
)

= |ψ′〉 ⊗ |c′〉, (9)

that is, the result is a perfect copy or, if one prefers, a perfect preservation of the initial Ha state |ψ′〉. The
states |ψ′〉 and |c〉 are assumed to be normalized, and since T is unitary, |c′〉 must also be normalized, but
otherwise we know nothing about it. Unlike (6), there is no need to introduce a phase factor on the right
side of this equation, as it can always be incorporated into the definition of |c′〉.

• Note that in order to produce a perfect copy (or preservation) on Ha, |Ψ′〉 in (9) must be a product
state on Ha ⊗Hc, not an entangled state. If we have an entangled state, then the probability of obtaining
|ψ′〉 at the later time cannot be 1.

2 Exercise. Justify the preceding statement. [One approach: Form an orthonormal basis {|aj〉} of Ha,
with |ψ′〉 = |a0〉. Expand |Ψ′〉 in the {|aj〉} with coefficients in E . Use this to calculate the probability of
|ψ′〉.]

• Next suppose there is a second state |ψ′′〉 nonorthogonal to |ψ′〉, which is also perfectly copied (or
preserved):

T
(

|ψ′′〉 ⊗ |c〉
)

= |ψ′′〉 ⊗ |c′′〉. (10)

Take the inner product of (9) with (10). The result is

〈ψ′|ψ′′〉 = 〈ψ′|ψ′′〉〈c′|c′′〉. (11)

Since |ψ′〉 and |ψ′′〉 are nonorthogonal, 〈ψ′|ψ′′〉 cannot be 0, so (11) tells us that 〈c′|c′′〉 = 1. Since both |c′〉
and |c′′〉 are normalized, this means that

|c′〉 = |c′′〉. (12)

2 Exercise. Complete the argument that for normalized states, 〈c′|c′′〉 = 1 implies that they are identical.
[Hint: What is the norm of |c′〉 − |c′′〉?] Also show that if |〈c′|c′′〉| = 1, |c′′〉 is |c′〉 multiplied by some phase
factor eiφ.

⋆ Since T is a linear operator, (12) combined with (9) and (10) tells us that

T
(

|ψ〉 ⊗ |c〉
)

= |ψ〉 ⊗ |c′〉 (13)

for any |ψ〉 which is a linear combination of |ψ′〉 and |ψ′′〉. Because |ψ′〉 and |ψ′′〉 are nonorthogonal and
thus not multiples of each other, their linear combinations form a two-dimensional Hilbert space, in effect
the input of a one-qubit quantum channel. What (13) tells us is that this is a perfect channel, and that no
information distinguishing different |ψ〉 in the channel resides in the |ψ〉-independent state |c′〉 (and thus in
Hc).

• It may not be obvious at first how this result applies to the teleportation circuit in Fig. 3, since the
input and output of the channel are different: the a qubit and the c qubit, respectively. All one needs to do
is to add at the end of the circuit a unitary operation which exchanges the a and the c qubits, so the output
is also the a qubit, and let T in (13) be the unitary corresponding to this augmented circuit.

⋆ The result can be summarized as follows: if a one-qubit channel is perfect for two nonorthogonal
states, it is perfect for all states, and no information distinguishing these states can leak out of it into the
environment.

⋆ In the same way, to check whether a d > 2 channel is perfect, it suffices to show that it is perfect for
d nonorthogonal states which together span the d-dimensional Hilbert space of the channel. No information
can leak out of such a perfect channel.

2 Exercise. What is meant by “d nonorthogonal states”? Suppose we label them as |φk〉, 1 ≤ k ≤ d.
Is it necessary that 〈φk|φj〉 be nonzero for all j and k, or will the argument go through with some of these
inner products equal to 0?
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