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1 Introduction

⋆ It seems very unlikely that quantum computation can be realized unless there is
some means of correcting the errors which will inevitably arise when physical devices are
constructed to carry out such a computation. The situation is far different from that in
ordinary “classical” computers in which for most purposes the probabilities of errors are so
small that they can be ignored.

• The absence of errors in ordinary computers is related to the fact that bits are embodied
in devices which are thermodynamically irreversible: 0 and 1 correspond to local free energy
minima in a thermodynamic sense. But thermodynamic irreversibility is a great enemy of
quantum computing, since it tends to decohere qubits, thus introducing unwanted noise into
the quantum computation.

• Effective techniques for quantum error correction were first developed in 1996 by Shor,
and independently by Steane. Up till then many skeptical physicists regarded quantum
computing as totally impractical. With the development of error correction techniques,
“totally impractical” was replaced with “extremely difficult.”
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• Hopefully, there will be further improvements in error correction methods as various
physical realizations of quantum computers are developed. As well as clever error correction
methods, one should be on the lookout for quantum algorithms which are more error-tolerant
than those known at present.

⋆ Quantum error correction was developed in analogy with classical error correcting
codes, but in the quantum case one needs to add a number of clever tricks. Rather than
introducing these in the abstract, it is helpful to explore some simple examples in which very
limited types of errors are allowed, and one can get an appreciation for some of these clever
tricks. Sections 5 and 6 contain a general theory of error correction, which will be much
easier to understand after exploring the examples considered here.

⋆ Classical error correction is based on redundancy : making several copies of information
in different signals or different physical objects, so that if one or a few of these are lost or
corrupted, the original information can be recovered from the ones that remain. Quantum
error correction is based on the same general principle, but simply copying the information
in the classical sense will not work, in view of no-cloning arguments. Hence the need for
tricks. Nonetheless, classical error correction provides a useful starting point.

• The simplest form of redundancy is simple duplication: make a copy. Then if you lose
the original, you still have the copy. A two bit code accomplishes this: in place of 0 use
00, in place of 1 use 11. Here 11 may stand for two pieces of paper with “1” written on
them, or two pieces of paper of the same color, or two signals of the appropriate sort sent in
succession through a communication channel, etc.

⋆ Error correction is possible in the case of duplication provided it is clear which of the
copies represents the original information. If one copy is lost, then it is the remaining copy
which carries the information. However, one copy may be corrupted in such a way that it
is not clear which of the two carries the original information. For instance, a signal going
through a channel might change from 1 to 0, or vice versa.

• To get around the problem just mentioned, one can increase the redundancy; e.g., use a
three-bit repetition code in which 000 represents 0 and 111 represents 1. Then if something
happens to just one of the copies, e.g., the third bit is corrupted, it is possible to recover the
original information using “majority rule”: if the signals emerging from the channel are 0,
0, and 1, one assumes that the original codeword was 000.

2 Two Qubit Code

⋆ We begin the exploration of quantum error correction using a two qubit code in which
the logical state |0〉L we wish to encode is represented by the |00〉 state of two carrier qubits
or carriers (often referred to as physical qubits), and |1〉L by |11〉. Linear combinations of
the type α|0〉L + β|1〉L are represented by α|00〉 + β|11〉.

• It is helpful to think of this code as produced by a coding circuit shown in Fig. 1. One
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can easily see that if the first qubit is in the state

|ψ〉 = α|0〉 + β|1〉, (1)

and the second, or ancillary, qubit in the state |0〉 at the initial time t0, then at time t1 the
combined state of the two qubits is

|Ψ1〉 = α|00〉 + β|11〉. (2)

|ψ〉

|0〉
t0 t1 t2

X

(a)

|ψ〉

|0〉

|0〉

|0〉

t0 t1 t2 t3

X

(b)

Figure 1: (a) Two-qubit coding circuit followed by a possible error X. (b) Nondestructive
measurement scheme which will not recover input information.

⋆ Now consider a very simple sort of error. During the time interval between t1 and
t2, the first qubit can either remain the same (no error) or be subjected to a unitary trans-
formation X (σx) to produce a “bit flip error”. On the figure this is indicated by an X
placed over the line representing the qubit. (The same X inside a square box would indicate
the corresponding 1-qubit gate as something happending every time the circuit is used.)
Whether or not the error occurs could depend upon some interaction with the environment.
Can we recover the original quantum state (1) when an error of this sort has occurred, or,
to be more precise, when an error of this sort might have occurred?

• The “classical” solution would be to simply throw away the (possibly) corrupted first
qubit and use the second. But this will not work in the quantum case, for if we ignore the
first qubit the second qubit is described by a density operator

ρ = |α|2[0] + |β|2[1]. (3)

Only if α = 0 or β = 0 is this a pure state, and in any case ρ contains no information about
the relative phases of α and β.

• Measurements of the sort indicated in Fig. 1(b), where two ancillary qubits are used in
order to allow nondestructive measurements of both code qubits in the standard basis, are
not a good method for recovering from an error.

2 Exercise. Analyze Fig. 1(b) by working out the states of the two code qubits at t3
conditional on the measurement outcomes, and show that one cannot, in general, recover
the original |ψ〉.
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⋆ There is, however, a solution to the problem based upon carrying out a measurement of
the right sort. This is the first of the clever tricks associated with quantum error correction.
To motivate it, note that the state |Ψ2〉 at t2 in Fig. 1 is the same as |Ψ1〉 in (2) if no error
occurs, whereas if a bit-flip error does occur, then it is

|Ψ′
2
〉 = α|10〉 + β|01〉. (4)

A comparision of (4) with (2) shows that even though neither qubit has a definite value in
either of these entangled states, they differ in that the labels are either identical in both
kets making up the superposition, or they are opposite (1 vs. 0). This suggests carrying out
a measurement of the property of “sameness” in order to determine whether an error has
occurred.

◦ To be precise, “sameness” is a property associated with the Hermitian operator ZaZb,
where the subscripts refer to qubits a and b—we assume that a is above b in Fig. 2. Thus an
eigenstate of ZaZb with the eigenvalue +1 has the property that the Z values are the same,
and an eigenvalue −1 means the Z values are different. In spin-half terms, the values of Sz

for the two particles are either the same, or they are opposite.

2 Exercise. Show that |Ψ1〉 in (2) is an eigenstate of ZaZb with eigenvalue +1 whatever
the values of α and β, so one can say that the Z values are the same, whereas |Ψ′

2
〉 in (4) is

an eigenstate with eigenvalue −1, again independent of α and β: the Z values are different.

• The measurement can be done using the arrangement shown in Fig. 2(a). The detector
will register a 1 if an error has occurred, and a 0 if an error has not occurred. If an error
has occurred, it can be corrected by applying an X gate to qubit 1.

|ψ〉

|0〉

|0〉
t0 t1 t2

X

(a)

|ψ〉

|0〉

|0〉
t0 t1 t2

X

(b)

Figure 2: Quantum error correction. (a) Measurement outcome can be used to correct error.
(b) Circuit automatically corrects error.

• The error correction can be implemented “automatically” using the quantum circuit in
Fig. 2(b). In this case it is not necessary to carry out the measurement on the third qubit,
which can be simply thrown away.

◦ Or the third qubit can be measured, in which case its value represents the “syndrome,”
and tells one whether or not the X error actually occurred between t1 and t2.

2 Exercise. Work out the unitary time transformation corresponding to Fig. 2(b), and
verify that the initial |ψ〉 emerges in the first qubit after the final CNOT operation, whether
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or not the third qubit is measured. Show that if the third qubit is measured its value
indicates whether or not the X error occurred.

• Does not a measurement always perturb a quantum system in an uncontrolled way?
There is some justification behind this piece of folklore, but clear thinking requires greater
precision. Figure 2 shows that it is sometimes possible to measure a particular kind of
information about a system without producing an uncontrolled perturbation on some other
type of information one is interested in.

|ψ〉

|0〉

|ψ〉

|s〉
t0 t1 t2 t3

X

Figure 3: Quantum error correction. The last two CNOT gates constitute a unitary decoding
mechanism that corrects the error.

⋆ The extra or ancillary third qubit in Fig. 2 is not really essential. The circuit in Fig. 3
will do just as well. The last two CNOT gates constitute a decoding circuit D.

2 Exercise. Check that the circuit in Fig. 3 will correct an X error between t1 and t2.
How could one determine the syndrome?

⋆ That decoding is, indeed, possible using a unitary operator D can be seen by con-
structing a table of what one wants D to do, see Table 1.

Table 1: Method to obtain D

t0 t1 t2 t3

|00〉 → |00〉 →
{ |00〉 → |00〉
|10〉 → |01〉

|10〉 → |11〉 →
{ |11〉 → |10〉
|01〉 → |11〉

• The kets at t2 in Table 1 depend both on the input at t0 and upon whether an X
error has (lower) or has not (upper) occurred between t1 and t2. The kets at t3 have been
chosen so tha (i) the first or a qubit is the same as at t0, i.e., the error has been corrected,
and (ii) the second or b qubit is in state |0〉 if no error has occurred, and |1〉 if an error has
occurred. One could equally well interchanged 0 and 1 for the second qubit. The fact that
an orthonormal basis of 2 qubits in the t2 column is mapped to an orthonormal basis in the
t3 column means the D operator is unitary, and a little guesswork yields the circuit in Fig. 3.

⋆ If in place of an X error on the first qubit in Fig. 3 there is a Z or “phase flip”
error, this error cannot be corrected. In a Z or phase flip error one has |0〉 → Z|0〉 = |0〉,
|1〉 → Z|1〉 = −|1〉.

5



• Such errors are not trivial. In quantum mechanics the overall phase of a ket of a
quantum state has no physical significance, but relative phases inside a superposition are
very important. Thus α|0〉 − β|1〉 does not represent the same thing as α|0〉 + β|1〉, except
when α = 0 or β = 0.

• An easy way to see that the phase flip error cannot be corrected is to note that if it
occurs the state at t2 will be

|Ψ′′
2
〉 = α|00〉 − β|11〉. (5)

But this is precisely the same as if in the initial input |ψ〉 β had had the opposite sign, and
no error had occurred. That is to say, |Ψ′′

2
〉 carries no information indicating that an error

has occurred, quite unlike |Ψ′
2
〉 in (4). So error correction is impossible.

3 Three-Qubit Code

• See the description in QCQI Sec. 10.1.1. A single qubit is encoded using the circuit in
Fig. 4(a) in three carrier qubits. As a result |Ψ1〉 at t1, compare (2), is

|Ψ1〉 = α|000〉 + β|111〉. (6)

t0 t1 t2 t3

|0〉

|0〉

|ψ〉

Figure 4: Three qubit encoding and decoding circuit corrects an X error on a single carrier
if it occurs at a time between t1 and t2.

⋆ Let us now suppose that between t1 and t2 a bit flip error might occur on the first or
second or third carrier. but not on more than one carrier. The result will be one of the four
possibilities

α|000〉 + β|111〉, α|100〉 + β|011〉, α|010〉 + β|101〉, α|001〉 + β|110〉 (7)

at t2. If we know on which of the three carriers the bit flip occurred, we can correct it
using an obvious extension of the method indicated in Sec. 2; see, in particular, Fig. 2(b).
The situation where we don’t know which carrier was affected, or whether an error actually
occurred, is more complicated. Measuring the value of individual qubits obviously won’t
work. However, as in Sec. 2, measuring whether or not two qubits are the same or different
in the standard basis provides a way of extracting information about where the error has
occurred without disturbing the quantum information.
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• Suppose the first two carriers are different in the sense that ZaZb = −1. This means—
take a look at (7)—that the error occurred either on carrier 1 or on carrier 2. We do not know
which. However, if we determine “same” or “different” for two different pairs of carriers,
this will tell us exactly where the error occurred, and having determined its location we can
then correct it, by applying an X to the appropriate carrier.

2 Exercise. Design a circuit analogous to that in Fig. 2(b), but of course more compli-
cated, which can be used with the help of ancillary bits (you can use three, but two suffice)
to automatically correct a bit flip error on a single carrier. [Hint. The correction operations
can be carried out fairly simply using Toffoli gates.]

⋆ Rather than using ancillary qubits, one can design a “compact” error correcting circuit
by means of a suitable decoding operation shown in the circuit in Fig. 4 between t2 and t3.
The corresponding unitary operator D acts in such a way that the desired information
|ψ〉 emerges in the first qubit, while the ancillary qubits are left in a state that contains
information about the syndrome—the nature of the error—but no information about |ψ〉
itself.

• Although we have the three qubit code in mind, it is helpful to think of Fig. 4 as
representing in a schematic fashion a very general scheme of error correction, in which the
number of ancillary qubits could be very large, and |ψ〉 might be a state on a Hilbert space
of arbitrarily large dimension. The only thing special is that we assume that at the end the
original information is perfectly restored: |ψ〉 out is the same as |ψ〉 in.

2 Exercise. Check that the decoding circuit in Fig. 4 does what it is supposed to do if
there is an X error on one but not more than one of the three carriers. What happens if
there is an X error on two carriers? A Z error on one carrier or two carriers? A Y (or XZ)
error on one carrier?

2 Exercise. Instead of using Fig. 4 work out D yourself using a table similar to Table 1,
but with 8 entries in the t2 column corresponding to the different kets in (7). Make appro-
priate choices for entries in the t3 column (there is more than one way to do this), and then
check, using unitary time development for an initial |ψ〉 = α|0〉 + β|1〉, that your scheme
actually works.

⋆ While the coding and decoding arrangement in Fig. 4 will correct an X error on any
carrier, it will not correct a Z or phase flip error in which |0〉 → |0〉 and |1〉 → −|1〉, so
that α|0〉 + β|1〉 is transformed to α|0〉 − β|1〉. The effect of a Z error on any one of three
carriers in Fig. 4 during the time between t1 and t2 is to transform |Ψ1〉 = α|000〉 + β|111〉
into |Ψ2〉 = α|000〉 − β|111〉, which is just what |Ψ1〉 would have been if the sign of β in the
initial state |ψ〉 had been different. Obviously there is no way of correcting this kind of error,
since there is no indication in the state |Ψ2〉 itself that anything is wrong. Consequently, the
3 qubit code we are using is incapable of correcting Z errors.

• However, an alternative procedure can be used to correct any Z error on a single qubit:
use the codewords |+ ++〉 and | −−−〉 to represent the logical states |+〉L and |−〉L. Since
Z|+〉 = |−〉 and Z|−〉 = |+〉, all we have done is to interchange the roles of X and Z.
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• A simple way of constructing the coding and decoding circuit in this case is shown in
Fig. 5, obtained by adding Hadamards at strategic points to the circuit in Fig. 4.

H

H

H

H

H

HH H

t0 t1 t2 t3

|0〉

|0〉

|ψ〉

Figure 5: Three qubit encoding and decoding circuit corrects a Z error on a single carrier
occurring during the interval t1 < t < t2.

2 Exercise. Check that the encoding part of the circuit (up to t1) in Fig. 5 does what it
is supposed to, i.e., an initial |+〉 is encoded as | + ++〉, and |−〉 as | − −−〉.

2 Exercise. By working through the unitary transformations corresponding to the dif-
ferent gates, show that the circuit in Fig. 5 will correct a Z (phase flip) error occurring on
one of the carriers between t1 and t2.

2 Exercise. Show that the first and last H gates in Fig. 5 acting on the first qubit are
not actually needed in terms of recovering from the effects of a Z error on a single qubit.

2 Exercise. Suppose one of the carriers in Fig. 5 suffers an X error during t1 < t < t2.
How does this affect what emerges as the first qubit at t3?

4 Nine Qubit Code

⋆ We have seen in Sec. 3 how a three qubit code allows one to correct an X (bit flip)
error on any carrier but not Z (phase flip) errors, while a different code on three qubits
permits the correction of an X error on any carrier, but not Z errors. Neither code corrects
both X and Z errors, and neither corrects Y errors, though of course we could design a
different three qubit code that would correct Y , but not X or Z errors. A Y error is the
same as an X error followed by a Z error or a Z error followed by an X error, since the
difference in phase between Y , ZX, and XZ can for this purpose be ignored.

2 Exercise. Construct the code that allows correction of a Y error if it occurs on only
one carrier, and design the corresponding coding and decoding circuit. [Hint: One should
replace H in Fig. 5 with something else. What should it be?]

• The shortest quantum code that will allow the correction of an X or Y or Z (or an
arbitrary error, see Sec. 5) on any single carrier is a five qubit code, see QCQI Sec. 10.5.6.

⋆ Shor’s nine qubit code was the first quantum code to be discovered that has the
property that it allows recovery from an arbitary error on any one of the carriers. Though
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more efficient codes exist, QCQI Sec. 10.5.6, the nine qubit code is worth studying in that
it allows one to “see” rather easily how the error recovery process works. It also illustrates
the clever and important concatenation strategy for constructing error correcting codes.

• The code itself is easily written down

|0〉L =
(

|000〉 + |111〉
)

⊗
(

|000〉 + |111〉
)

⊗
(

|000〉 + |111〉
)

/
√

8

|1〉L =
(

|000〉 − |111〉
)

⊗
(

|000〉 − |111〉
)

⊗
(

|000〉 − |111〉
)

/
√

8 (8)

Note how the nine qubits are divided into three blocks of three

⋆ To understand how the code works it is helpful to construct a circuit, the analog of
Figs. 4 and 5, that does the coding and decoding, see Fig. 6.

H

H

H

H

H

H
CB DB

CB DB

CB DB

t0 t′
0

t1 t2 t′
2

t3

|ψ〉

|0〉

|0〉

CB = |0〉

|0〉

DB =

Figure 6: Nine qubit encoding and decoding circuit corrects any error on a single carrier,
assuming it occurs during the interval t1 < t < t2.

• The 3 encoding boxes CB include ancillary bits that are initially in the |0〉 state. Since
these are fixed, one can regard CB as an isometry (C†

BCB = I) from the (variable) input
qubit, Hilbert space dimension 2, entering the CB box on the left, to the 3 qubits, Hilbert
space of dimension 8, emerging on the right.

2 Exercise. Show that the encoding circuit in Fig. 6 produces the result in (8)
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2 Exercise. Convince yourself that the decoding circuit in Fig. 6 works at least to the
extent that if no errors occur between t1 and t2, an initial |ψ〉 = α|0〉+β|1〉 in the first qubit
at t0 will emerge in the same state at t3.

• The decoding DB boxes contain measurements in the standard basis. These measure-
ments are not needed for the decoding operation—one could simply throw the extra qubits
away—but measuring them tells one somethng about the error syndrome.

⋆ To see how the nine qubit code works, suppose than an X error occurs on one of the
nine carriers during the time interval between t1 and t2. Since this carrier lies between a
CB and a DB, the error will be corrected (or eliminated) by the process described earlier in
connection with the circuit in Fig. 4

◦ Indeed, one could tolerate up to three X errors provided they occur in different blocks.
Thus even if X1 and X4 and X9 occur simultaneously, they will all be corrected. But if X1

and X3 occur simultaneously the result will be an error that is not corrected by the circuit.

• Now suppose that a Z error occurs on one of the carriers, e.g., the first carrier in the
first block. As noted in the discussion in Sec. 3, it will not be corrected by the encoding-
decoding uperation represented by the first (uppermost) pair of CB and DB boxes in Fig. 6.
Instead, it will be “passed along” and have exactly the same effect as if the top CB and
DB boxes were missing and a Z error occurred on a single qubit carrier connecting the top
two H gates. Thus if no errors occur in any of the other 8 carriers, a Z error on the first
carrier has the same sort of effect as a Z error on the uppermost carrier in Fig. 5. But then
the initial and final parts of the circuit in Fig. 6, those preceding t′

0
and following t′

2
, will

eliminate this error in the same way as the circuit in Fig. 5.

• What about a Y error on one of the 9 carriers? Assume this error occurs on the first
carrier. So far as the inner part of the correction circuit in Fig. 6 is concerned, the part
involving the top CB and DB boxes, the effect is the same as a Y error on the first carrier in
Fig. 4. It is a straightforward exercise (did you do it already?) to show that that circuit will
correct the X part but leave the Z part present. (There could also be an additional overall
phase, but it does not matter.) But then the Z part will be eliminated, as already noted,
by the outer part of the encoding/decoding circuit in Fig. 6.

⋆ In conclusion, we have shown that the nine qubit code when made part of the circuit
in Fig. 6 will correct any of the 3 errors X or Y or Z, provided it occurs in a single carrier.
Thus this code accomplishes in the quantum domain something very similar to the three bit
repetition code of Sec. 1: the automatic correction of an error on any of the carriers.

• But why should errors be restricted to X or Y or Z? Cannot one imagine something
that lies “in between,” say some linear combination of X and Z? Yes one can, and errors
need not even be represented by unitary operators. That is why we need to supplement the
preceding examples with a general theory of (this kind of) error correction.
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5 General Theory of Error Correction

⋆ The states |0〉 and |1〉 form an orthonormal basis of the Hilbert space H of a single
qubit, but H itself consists of more than |0〉 and |1〉: it includes all linear combinations of
these basis kets. In quantum mechanics it is the Hilbert space which is the “fundamental”
mathematical structure, while there are many possible choices for bases, even orthonormal
bases. The choice of basis is a matter of convenience.

• Similarly, a quantum code is best thought of not just as a collection of codewords,
as in classical codes, but as a subspace P of the Hilbert space Hc of the code carriers,
a subspace which is spanned by (made up of all linear combinations of) a collection of
codewords {|cj〉}, 1 ≤ j ≤ K, which will hereafter be referred to as the coding (sub)space
While it is customary and convenient to use a particular basis for this subspace, from the
point of view of fundamental quantum mechanics, and of quantum error correction of the
sort we are considering, the choice of basis is arbitrary; what counts is the subspace itself.

◦ In the examples in Secs. 2 to 4 we considered K = 2, thus two-dimensional subspaces.
There are many interesting quantum codes with K > 2, and the general theory discussed
here applies for arbitrary (finite) K.

⋆ We begin with the following model of encoding and errors. The quantum information
of interest is a ket |ψ〉 in a Hilbert space Ha of dimension K. In addition there is an ancillary
space Hb which is initially in a definite state |b0〉. For example, Ha could be a single qubit,
and Hb a set of ancillary qubits in a state |b0〉 = |00 · · · 0〉.

⋆ The information initially in Ha is encoded by a unitary transformation Ĉ which maps
Ha ⊗ Hb to a space Hc, the Hilbert space of the code carriers (or simply “carriers”). In
particular, if {|ap〉} is an orthonormal basis of Ha, the collection of kets

Ĉ(|ap〉 ⊗ |b0〉 = C|ap〉 = |cp〉 (9)

span the coding subspace.

• There is no loss of generality, and formulas become a bit simpler, if one replaces Ĉ with
the isometry C mapping Ha to Hc, defined in (9) by its action on each of the basis states
|ap〉.

◦ The isometry C : Ha → Hc is like a unitary, except that it maps the smaller Hilbert
space Ha onto the subspace P of Hc, rather than onto all of Hc. In particular it satisfies the
conditions

C†C = Ia, CC† = P, (10)

where P is the projector onto the subspace P , thus in effect the identity operator on this
subspace. In particular, C preserves inner products: (C|a′〉)†C|a〉 = 〈a′|a〉, which justifies
calling it an isometry (i.e., it preserves the metric).

◦ In what follows one could use the unitary Ĉ in place of the isometry C at the cost of
carrying along the |b0〉 from (9) in various formulas.
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• Errors are introduced by interactions between the carriers, Hilbert space Hc, and an
environment. The effects of the environment on the quantum state of Hc can be represented
by a collection K of Kraus operators {Ki} satisfying the normalization condition

∑

i K
†
i Ki =

Ic, mapping Hc to itself, which we shall refer to informally as “errors.” As a consequence
the quantum state in the time interval of interest to us, from t1 to t2, is represented by the
map

ρ1 → ρ2 = K̂(ρ1) :=
∑

i

Kiρ1K
†
i . (11)

◦ As usual, one can think of the transformation (11) as resulting from a unitary trans-
formation mapping the Hilbert space Hc ⊗He to itself, where He is the Hilbert space of the
environment, assumed to be initially in some fixed pure state. After this the environment is
ignored.

⋆ Next assume that there is a decoding operator D, an isometry mapping Hc to a space
Ha ⊗Hf , such that for every |ψ〉 in Ha and every Ki in K,

DKiC|ψ〉 = |ψ〉 ⊗ |si〉, (12)

where |si〉 ∈ Hf is a syndrome. Note that the syndromes are, in general, neither orthogonal
nor normalized, and that |si〉 depends (or course) on Ki, but is independent of |ψ〉, i.e., (12)
holds for any |ψ〉 in Ha.

◦ In the examples in Secs. 2, 3 and 4 D is a unitary operator, see Figs. 2, 3 and 4. However,
in (12) we only require that it be an isometry. What this means is that the recovery operation
may involve an additional ancillary system or ancilla prepared in a particular state, which
is made to interact with the carriers through some unitary operation.

• Only for fairly special collections K of Kraus operators, i.e., special forms of interaction
with the environment, will such a D exist. What one does in practice is to identify some
subcollection of K as constituting the “important” or “most significant” errors, and then
find a D which works for this subcollection.

◦ There is a classical analog. Consider the three bit repetition code, 000 and 111, which
is designed for correcting errors on a single bit, but cannot correct errors on two or more
bits. This makes sense when the probabilities of errors on two or three bits are much smaller
than the probability of an error on one bit alone. In this case the “important” errors are the
one bit errors.

• The scheme in (12) is a quite general form of perfect error correction, in the sense
that at the end the specified errors have no effect on the quantum information in Ha. If an
isometry of this form does not exist, then the information encoded in the carriers cannot be
perfectly recovered. (Imperfect error recovery is outside the scope of these notes.)

⋆ We can turn (12) into a definition. Let the isometries C and D be given. Then a
correctable error (relative to C and D) is any operator E on the Hilbert space Hc of carriers
such that

DEC|ψ〉 = |ψ〉 ⊗ |s(E)〉 (13)
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for every |ψ〉 in Ha, where the syndrome |s(E)〉 will in general depend upon the operator
E, but not on |ψ〉.

• It is evident that if (13) holds for some E1 with syndrome |s1〉 and E2 with syndrome
|s2〉, it will also hold for αE1 + βE2, with a syndrome |s〉 = α|s1〉 + β|s2〉. That is to say,
the set of correctable errors forms a linear vector space Ec of operators on Hc.

◦ Recall that for a Hilbert space H of dimension d, the collection of all operators is a
linear vector space of dimension d2, and it is itself a Hilbert space if one uses an operator
inner product 〈A,B〉 = Tr(A†B). The space Ec of correctable errors is a subspace of this
space of operators for the Hilbert space Hc.

◦ Note that Ec depends both on the encoding transformation C (which in turn depends
on |b0〉 and Ĉ in (9)) and on the decoding transformation D. For a given C there may
be more than one decoding transformation D and thus more than one space of correctable
errors. (See Sec. 6 below for a condition on Ec that guarantees the existence of a decoding
operation D, and indicates how to construct it.)

◦ One usually assumes that the identity I is a member of Ec, i.e., if there is no error,
then D decodes things correctly. However, this is not essential.

⋆ As a particular (and very important) application, note that any operator on the space
of one qubit can be written as a linear combination of the four operators

I, X = σx, Y = σy, Z = σz, (14)

which form a basis of the operator space. Thus if one can show that some error correction
protocol, i.e., some D, corrects errors of the type X, Y , and Z on a particular qubit, and
also gives the right answer if there is no error at all (the identity I), it will correct any and
all errors on this qubit.

• Consider, in particular, Shor’s 9-bit code with an appropriate D. One can show explic-
itly that it corrects errors Xj, Zj and XjZj = −iYj on the j’th qubit. Consequently it can
correct any and all errors on the j’th qubit, denoted by a subscript, thus

X1 = X ⊗ I ⊗ I ⊗ · · · , Z2 = I ⊗ Z ⊗ I ⊗ · · · , (15)

and so forth.

⋆ However, the fact that Ec is a linear space of operators does not mean that products
of operators in Ec are in Ec. Thus it may well be the case that E and E ′ are members of Ec,
whereas EE ′ is not in Ec.

◦ Again, Shor’s 9-bit code provides an example. Both X1 and X2 are in D, so that
a bit flip of qubit 1 is a correctable error, as is a bit flip of qubit 2. But the product
X1X2 = X1 ⊗ X2, which means flipping both 1 and 2, is not in the space of correctable
errors. On the other hand, X1X4 is in Ec, but this is something one has to work out in terms
of the structure of the code; it does not follow from the fact that both X1 and X4 are in Ec.
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6 Subspace Condition

⋆ As noted in Sec. 5, code words of a quantum error correcting code span a linear
subspace P , the coding (sub)space of the Hilbert space Hc of the code carriers. One can
use a condition due to Knill and Laflamme (1997) to help identify (operator) spaces Ec of
correctable errors—there may be more than one interesting Ec—using properties of P or,
equivalently, the projector P onto P , without first having to look for a decoding operation
D.

◦ For the three qubit code of Sec. 3 with code words |000〉 an |111〉, P consists of all their
linear combinations, and the projector is

P = |000〉〈000| + |111〉〈111|. (16)

⋆ The Knill and Laflamme projector condition says that a linear space Ec of operators
is correctable (i.e., there exists a decoding operation D in the sense of (13)) if and only if

PE†ĒP = α(E, Ē)P (17)

whenever E and Ē are any two elements of Ec, where α(E, Ē) is some complex number
depending on the two operators.

• The projector P onto the coding space P does not depend upon the choice of a basis
for P , but it is often convenient to choose an orthonormal collection {|cp〉} of code words
that span P , and write

〈cp|E†Ē|cq〉 = α(E, Ē)δpq. (18)

2 Exercise. Prove the equivalence of (17) and (18). Hint: P =
∑

p |cp〉〈cp|.
⋆ Since (17) or (18) holds for all operators in the linear space Ec, they also holds when E

and Ē are elements belonging to some basis {Ej} of operators in Ec. Conversely, it suffices
to check (17) or (18) using operators belong to such a basis, i.e., it is enough to show that

PE†
jEkP = αjkP (19)

or
〈cp|E†

jEk|cq〉 = αjkδpq, (20)

or where αjk = α(Ej, Ek) is a matrix of complex numbers.

2 Exercise. Show that (19) implies (17) or (18), i.e., it suffices to check the latter for
operators belonging to the basis {Ej}.

2 Exercise. Show that αjk is a positive matrix, i.e., a Hermitian matrix with nonnegative
eigenvalues. [Hint. Use the adjoint of (19) to establish Hermiticity. Check positivity of
eigenvalues by showing that for any collection of complex numbers {βj} it is the case that
∑

jk β∗
j αjkβk ≥ 0. Recall that for any operator B, B†B is a positive operator.]
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• Since αij is a Hermitian matrix it can be diagonalized using a unitary matrix, i.e.,

αij =
∑

k

uikdku
∗
jk, (21)

with eigenvalues dk ≥ 0. This means we can define a new set of operators

Fk =
∑

i

uikEi, (22)

forming a basis of Ec, and for which (19) takes the form

PF †
kFlP = δkldkP. (23)

• In general some of the dk will be zero, and we shall call these “null errors” (see below).
For the cases with dk > 0 define the principal errors

Gk = Fk/
√

dk (24)

which satisfy the simple relationship

PG†
kGlP = δklP (25)

or, equivalently, using the basis {|cp〉},

〈cp|G†
kGl|cq〉 = δklδpq. (26)

◦ The “null errors” with dk = 0 satisfy

〈cp|F †
kFk|cp〉 = 0, (27)

which implies that
Fk|cp〉 = 0. (28)

While this does not mean that Fk is zero as an operator, it does mean that such “errors”
occur with zero probability for any state in the code space P . They are, nonetheless, a
nuisance which needs to be taken account of when constructing proofs.

⋆ Let us explore the significance of (26) by defining

|ck
p〉 := Gk|cp〉. (29)

Then (26) becomes
〈ck

p|cl
q〉 = δklδpq, (30)

or, in other words, {|ck
p〉} is an orthonormal collection of vectors labeled by two sets of

indices, p and k. In the case k = l, the significance of (30) is that Gk maps the code space
P onto another subspace Pk of the Hilbert space, spanned by the |ck

p〉 for p = 1, 2, . . ., as
an isometry (preserving inner products), in the same way as a unitary map. When k 6= l,
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(30) tells us that the two subspaces Pk and P l are mutually orthogonal. The general idea is
illustrated schematically in the figure on p. 436 of QCQI.

• Using this picture we can think of an error correction process as follows. Let P k be the
projector onto the subspace Pk, and construct a decomposition of the identity on Hc of the
form

I = P 1 + P 2 + · · · + (I − P 1 − P 2 − · · · ). (31)

One can then imagine carrying out a measurement after one of the errors has occurred, to
determine in which of these subspaces the system is to be found. If it is subspace Pk, then
map that subspace back to the original space P using an isometry that undoes the effects of
Gk, and then decode by reversing the original encoding procedure.

⋆ These steps can be combined into a single unitary operation D constructed in the
following way. Start with the orthonormal basis {|ap〉} of Ha, and let the corresponding
orthonormal basis {|cp〉} of the coding space P , see (9). Now choose in Hf an orthonormal
collection {|fk〉}, one vector for each principal error. Then define D by requiring that

D|ck
p〉 = |ap〉 ⊗ |fk〉 (32)

for every k and p, and extending this to an isometry on mapping Hc to Ha ⊗Hf — this is
always possible, because the {|ck

p〉} form an orthonormal collection, as noted earlier, so (32)
maps an orthonormal collection to another orthonormal collection. By combining (29) with
(32) we obtain

DGkC|ψ〉 = |ψ〉 ⊗ |fk〉, (33)

since any |ψ〉 in Ha can be written as a linear combination of the basis elements {|ap〉}. As
this equation is of the form (13), it follows that the principal errors Gk belong to the space
of correctable errors Ec(D). Now the original Ei satisfying (20) are linear combinations of
the Gk along with the null errors, and since (33) is also satisfied when Gk is replaced by a
null error—set |fk〉 equal to the zero vector, and both sides are zero—it follows that all the
Ei we started with belong to Ec(D).

⋆ We have shown that when the projector condition (17) is satisfied for every E and
Ē in the space Ec, then a decoding operation can be constructed. Now let us demonstrate
the converse. Given a decoding isometry D, the linear space Ec(D) of operators E satisfying
(13) written as

DEC|ap〉 = DE|cp〉 = |ap〉 ⊗ |s(E)〉 (34)

has the property that for any E and Ē in Ec(D) it is the case that (18) holds. This follows
by noting that the second equality in (34) implies that

〈cp|E†Ē|cq〉 = 〈cp|E†D†DĒ|cq〉 = 〈s(E)|s(Ē)〉δpq, (35)

where we have used the fact that D is an isometry, so D†D = Ic. Thus in this case α(E, Ē) =
〈s(E)|s(Ē)〉 in (18) is the inner product of the syndromes.
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