
Chapter 19

Coins and Counterfactuals

19.1 Quantum Paradoxes

The next few chapters are devoted to resolving a number of quantum paradoxes in the sense of giving
a reasonable explanation of a seemingly paradoxical result in terms of the principles of quantum
theory discussed earlier in this book. None of these paradoxes indicates a defect in quantum theory.
Instead, when they have been properly understood, they show us that the quantum world is rather
different from the world of our everyday experience and of classical physics, in a way somewhat
analogous to that in which relativity theory has shows us that the laws appropriate for describing
the behavior of objects moving at high speed differ in significant ways from those of pre-relativistic
physics.

An inadequate theory of quantum measurements is at the root of several quantum paradoxes. In
particular, the notion that wave function collapse is a physical effect produced by a measurement,
rather than a method of calculation, see Sec. 18.2, has given rise to a certain amount of confusion.
Smuggling rules for classical reasoning into the quantum domain where they do not belong and
where they give rise to logical inconsistencies is another common source of confusion. In particular,
many paradoxes involve mixing the results from incompatible quantum frameworks.

Certain quantum paradoxes have given rise to the idea that the quantum world is permeated
by mysterious influences that propagate faster than the speed of light, in conflict with the theory
of relativity. They are mysterious in that that they cannot be used to transmit signals, which
means that they are, at least in any direct sense, experimentally unobservable. While relativistic
quantum theory is outside the scope of this book, an analysis of non-relativistic versions of some
of the paradoxes which are supposed to show the presence of superluminal influences indicates
that the real source of such ghostly effects is the need to correct logical errors arising from the
assumption that the quantum world is behaving in some respects in a classical way. When the
situation is studied using consistent quantum principles, the ghosts disappear, and with them the
corresponding difficulty in reconciling quantum mechanics with relativity theory. The reason why
ghostly influences cannot be used to transmit signals faster than the speed of light is then obvious:
there are no such influences.

Some quantum paradoxes are stated in a way that involves a free choice on the part of a human
observer: e.g., whether to measure the x or the z component of spin angular momentum of some

227



228 CHAPTER 19. COINS AND COUNTERFACTUALS

particle. Since the principles of quantum theory as treated in this book apply to a closed system,
with all parts of it subject to quantum laws, a complete discussion of such paradoxes would require
including the human observer as part of the quantum system, and using a quantum model of
conscious human choice. This would be rather difficult to do given the current primitive state
of scientific understanding of human consciousness. Fortunately, for most quantum paradoxes it
seems possible to evade the issue of human consciousness by letting the outcome of a quantum
coin toss “decide” what will be measured. As discussed in Sec. 19.2 below, the quantum coin is
a purely physical device connected to a suitable servomechanism. By this means the stochastic
nature of quantum mechanics can be used as a tool to model something which is indeterminate,
which cannot be known in advance.

Certain quantum paradoxes are stated in terms of counterfactuals: what would have happened
if some state of affairs had been different from what it actually was. Other paradoxes have both
a counterfactual as well as in an “ordinary” form. In order to discuss counterfactual quantum
paradoxes, one needs a quantum version of counterfactual reasoning. Unfortunately, philosophers
and logicians have yet to reach agreement on what constitutes valid counterfactual reasoning in the
classical domain. Our strategy will be to avoid the difficult problems which perplex the philoso-
phers, such as “Would a kangaroo topple if it had no tail?”, and focus on a rather select group
of counterfactual questions which arise in a probabilistic context. These are of the general form:
“What would have happened if the coin flip had resulted in heads rather than tails?” They are
considered first from a classical (or everyday world) perspective in Sec. 19.3, and then translated
into quantum terms in Sec. 19.4.

19.2 Quantum Coins

In a world governed by classical determinism there are no truly random events. But quantum
mechanics allows for events which are irreducibly probabilistic. For example, a photon is sent into
a beamsplitter and detected by one of two detectors situated on the two output channels. Quantum
theory allows us to assign a probability that one detector or the other will detect the photon, but
provides no deterministic prediction of which detector will do so in any particular realization of the
experiment. This system generates a random output in the same way as tossing a coin, which is
why it is reasonable to call it a quantum coin. One can arrange things so that the probabilities for
the two outcomes are not the same, or so that there are three or even more random outcomes, with
equal or unequal probabilities. We shall use the term “quantum coin” to refer to any such device,
and “quantum coin toss” to refer to the corresponding stochastic process. There is no reason in
principle why various experiments involving statistical sampling (such as drug trials) should not be
carried out using the “genuine randomness” of quantum coins.

To illustrate the sort of thing we have in mind, consider the gedanken experiment in Fig. 19.1,
in which a particle, initially in a wave packet |0a〉, is approaching a point P where a beam splitter B
may may or may not be located depending upon the outcome of tossing a quantum coin Q shortly
before the particle arrives at P . If the outcome of the toss is Q′, the beam splitter is left in place
at B′, whereas if it is Q′′, a servomechanism rapidly moves the beam splitter to B ′′ out of the path
of the particle, which continues in a straight line.

Let us describe this in quantum terms in the following way. Suppose that |Q〉 is the initial state
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Figure 19.1: Particle paths approaching and leaving a beam splitter which is either left in place,
B′, or moved out of the way, B′′, before the arrival of the particle.

of the quantum coin and the attached servomechanism at time t0, and that between t0 and t1 there
is a unitary time evolution

|Q〉 7→ (|Q′〉 + |Q′′〉)/
√

2. (19.1)

Next, let |B′〉 and |B′′〉 be states corresponding to the beam splitter being either left in place or
moved out of the path of the particle, and assume a unitary time evolution

|Q′〉|B′〉 7→ |Q′〉|B′〉, |Q′′〉|B′〉 7→ |Q′′〉|B′′〉 (19.2)

between t1 and t2. Finally, the motion of the particle from t2 to t3 is governed by

|2a〉|B′〉 7→ (|3c〉 + |3d〉)|B′〉/
√

2, |2a〉|B′′〉 7→ |3d〉|B′′〉, (19.3)

where |2a〉 is a wave packet on path a for the particle at time t2, and a similar notation is used
for wave packets on paths c and d in Fig. 19.1. The overall unitary time evolution of the system
consisting of the particle, the quantum coin, and the apparatus during the time interval from t0
until t3 takes the form

|Ψ0〉 = |0a〉 ⊗ |Q〉|B′〉 7→ |1a〉 ⊗
(

|Q′〉 + |Q′′〉
)

|B′〉/
√

2

7→ |2a〉 ⊗
(

|Q′〉|B′〉 + |Q′′〉|B′′〉
)

/
√

2

7→
(

|3c〉 + |3d〉
)

⊗ |Q′〉|B′〉/2 + |3d〉 ⊗ |Q′′〉|B′′〉/
√

2,

(19.4)

where ⊗ helps to set the particle off from the rest of the quantum state.
There are reasons, discussed in Sec. 17.4, why macroscopic objects are best described not with

individual kets but with macro projectors, or statistical distributions or density matrices. The use
of kets is not misleading, however, and it makes the reasoning somewhat simpler. With a little
effort—again, see Sec. 17.4—one can reconstruct arguments of the sort we shall be considering so
that macroscopic properties are represented by macro projectors. While we will continue to use
the simpler arguments, projectors representing macroscopic properties will be denoted by symbols
without square brackets, as in (19.5) below, so that the formulas remain unchanged in a more
sophisticated analysis.

Consider the consistent family for the times t0 < t1 < t2 < t3 with support consisting of the
two histories

Ψ0 �
{

Q′ � B′ � [3ā],

Q′′ � B′′ � [3d],
(19.5)
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where
|3ā〉 :=

(

|3c〉 + |3d〉
)

/
√

2. (19.6)

It allows one to say that if the quantum coin outcome is Q′, then the particle is later in the coherent
superposition state |3ā〉, a state which could be detected by bringing the beams back together again
and passing them through a second beam splitter, as in Fig. 18.3(c). On the other hand, if the
outcome is Q′′, then the particle will later be in channel d in a wavepacket |3d〉. As [3ā] and [3d]
do not commute with each other, it is clear that these final states in (19.5) are dependent, in the
sense discussed in Ch. 14, either upon the earlier beam splitter locations |B ′〉 and |B′′〉, or the still
earlier outcomes |Q′〉 and |Q′′〉 of the quantum coin toss.

The expressions in (19.4) are a bit cumbersome, and the same effect can be achieved with a
somewhat simpler notation in which (19.1) and (19.2) are replaced by the single expression

|B0〉 7→
(

|B′〉 + |B′′〉
)

/
√

2, (19.7)

where |B0〉 is the initial state of the entire apparatus, including the quantum coin and the beam
splitter, whereas |B′〉 and |B′′〉 are apparatus states in which the beam splitter is at the locations
B′ and B′′ indicated in Fig. 19.1. The time development of the particle in interaction with the
beam splitter is given, as before, by (19.3).

19.3 Stochastic Counterfactuals

A workman falls from a scaffolding, but is caught by a safety net, so he is not injured. What would

have happened if the safety net had not been present? This is an example of a counterfactual

question, where one has to imagine something different from what actually exists, and then draw
some conclusion. Answering it involves counterfactual reasoning, which is employed all the time
in the everyday world, though it is still not entirely understood by philosophers and logicians. In
essence it involves comparing two or more possible states of affairs, often referred to as “worlds”,
which are similar in certain respects and differ in others. In the example just considered, a world
in which the safety net is present is compared to a world in which it is absent, while both worlds
have in common the feature that the workman falls from the scaffolding.

We begin our study of counterfactual reasoning by looking at a scheme which is able to address
a limited class of counterfactual questions in a classical but stochastic world, that is, one in which
there is a random element added to classical dynamics. The world of everyday experience is such
a world, since classical physics gives deterministic answers to some questions, but there are others,
e.g., “What will the weather be two weeks from now?”, for which only probabilistic answers are
available.

Shall we play badminton or tennis this afternoon? Let us toss a coin: H (heads) for badminton,
T (tails) for tennis. The coin turns up T , so we play tennis. What would have happened if the
result of the coin toss had been H? It is useful to introduce a diagrammatic way of representing the
question and deriving an answer, Fig. 19.2. The node at the left at time t1 represents the situation
before the coin toss, and the two nodes at t2 are the mutually exclusive possibilities resulting from
that toss. The lower branch represents what actually occurred: the toss resulted in T and a game
of tennis. To answer the question of what would have happened if the coin had turned up the other
way, we start from the node representing what actually happened, go backwards in time to the
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node preceding the coin toss, which we shall call the pivot, and then forwards along the alternative
branch to arrive at the badminton game. This type of counterfactual reasoning can be thought
of as comparing histories in two “worlds” which are identical at all times up to and including the
pivot point t1 at which the coin is tossed. After that, one of these worlds contains the outcome H
and the consequences which flow from this, including a game of badminton, while the other world
contains the outcome T and its consequences.

H

T

Badminton

Tennis
t1 t2 t3

Figure 19.2: Diagram for counterfactual analysis of a coin toss.

It is instructive to embed the preceding example in a slightly more complicated situation. Let us
suppose that the choice between tennis or badminton was preceded by another: should we go visit
the museum, or get some exercise? Once again, imagine the decision being made by tossing a coin
at time t0, with H leading to exercise and T to a museum visit. At the museum a choice between
visiting one of two exhibits can also be carried out by tossing a coin. The set of possibilities is
shown in Fig. 19.3. Suppose that the actual sequence of the two coins was H1T2, leading to tennis.
If the first coin toss had resulted in T1 rather than H1, what would have happened? Start from the
tennis node in Fig. 19.3, go back to the pivot node P0 at t0 preceding the first coin toss, and then
forwards on the alternative, T1 branch. This time there is not a unique possibility, for the second
coin toss could have been either H2 or T2. Thus the appropriate answer would be: Had the first coin
toss resulted in T1, we would have gone to one or the other of the two exhibits at the museum, each
possibility having probability one half. That counterfactual questions have probabilistic answers
is just what one would expect if the dynamics describing the situation is stochastic, rather than
deterministic. The answer is deterministic only in the limiting cases of probabilities equal to 1 or
0.

P0

H1

T1

H2

T2

H2

T2

Badminton

Tennis

Exhibit 1

Exhibit 2
t0 t1 t2 t3

Figure 19.3: Diagram for analyzing two successive coin tosses.

However, a somewhat surprising feature of stochastic counterfactual reasoning comes to light
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if we ask the question, again assuming the afternoon was devoted to tennis, “What would have
happened if the first coin had turned up H1 (as it actually did)?”, and attempt to answer it using
the diagram in Fig. 19.3. Let us call this a null counterfactual question, since it asks not what
would have happened if the world had been different in some way, but what would have happened
if the world had been the same in this particular respect. The answer obtained by tracing from
“tennis” backwards to P0 in Fig. 19.3 and then forwards again along the upper, or H1 branch,
is not tennis, but it is badminton or tennis, each with probability one half. We do not, in other
words, reach the conclusion that what actually happened would have happened had the world been
the same in respect to the outcome of the first coin toss. Is it reasonable to have a stochastic
answer, with probability less than one, for a null counterfactual question? Yes, because to have a
deterministic answer would be to specify implicitly that the second coin toss turned out the way
it actually did. But in a world which is not deterministic there is no reason why random events
should not have turned out differently.

Counterfactual questions are sometimes ambiguous because there is more than one possibility
for a pivot. For example, “What would we have done if we had not played tennis this afternoon?”
will be answered in a different way depending upon whether H1 or P0 in Fig. 19.3 is used as the
pivot. In order to make a counterfactual question precise, one must specify both a framework of
possibilities, as in Fig. 19.3, and also a pivot, the point at which the actual and counterfactual
worlds, identical at earlier times, “split apart”.

This method of reasoning is useful for answering some types of counterfactual questions but not
others. Even to use it for the case of a workman whose fall is broken by a safety net requires an
exercise in imagination. Let us suppose that just after the workman started to fall (the pivot), the
safety net was swiftly removed, or left in place, depending upon some rapid electronic coin toss, so
that the situation could be represented in a diagram similar to Fig. 19.2. Is this an adequate, or
at least a useful way of thinking about this counterfactual question? At least it represents a way
to get started, and we shall employ the same idea for quantum counterfactuals.

19.4 Quantum Counterfactuals

Counterfactuals have played an important role in discussions of quantum measurements. Thus
a perennial question in the foundations of quantum theory is whether measurements reveal pre-
existing properties of a measured system, or whether they somehow “create” such properties.
Suppose, to take an example, that a Stern-Gerlach measurement reveals the value Sx = 1/2 for a
spin half particle. Would the particle have had the same value of Sx even if the measurement had not
been made? An interpretation of quantum theory which gives a “yes” answer to this counterfactual
question can be said to be realistic in that it affirms the existence of certain properties or events
in the world independent of whether measurements are made. (For some comments on realism in
quantum theory, see Ch. 27.) Another similar counterfactual question is the following: Given that
the Sx measurement outcome indicates, using an appropriate framework (see Ch. 17), that the
value of Sx was +1/2 before the measurement, would this still have been the case if Sz had been
measured instead of Sx?

The system of quantum counterfactual reasoning presented here is designed to answer these
and similar questions. It is quite similar to that introduced in the previous section for addressing
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classical counterfactual questions. It makes use of quantum coins of the sort discussed in Sec. 19.2,
and diagrams like those in Figs. 19.2 and 19.3. The nodes in these diagrams represent events in
a consistent family of quantum histories, and nodes connected by lines indicate the histories with
finite weight that form the support of the family. We require that the family be consistent, and that
all the histories in the diagram belong to the same consistent family. This is a single framework

rule for quantum counterfactual reasoning comparable to the one discussed in Sec. 16.1 for ordinary
quantum reasoning.

Let us see how this works in the case in which Sx is the component of spin actually measured
for a spin-half particle, and we are interested in what would have been the case if Sz had been
measured instead. Imagine a Stern-Gerlach apparatus of the sort discussed in Sec. 17.2 or Sec. 18.3,
arranged so that it can be rotated about an axis (in the manner indicated in Sec. 18.3) to measure
either Sx or Sz. When ready to measure Sx its initial state is |X◦〉, and its interaction with the
particle results in the unitary time development

|x+〉 ⊗ |X◦〉 7→ |X+〉, |x−〉 ⊗ |X◦〉 7→ |X−〉. (19.8)

Similarly, when oriented to measure Sz the initial state is |Z◦〉, and the corresponding time devel-
opment is

|z+〉 ⊗ |Z◦〉 7→ |Z+〉, |z−〉 ⊗ |Z◦〉 7→ |Z−〉. (19.9)

The symbols X◦, etc., without square brackets will be used to denote the corresponding projectors.
Because they refer to macroscopically distinct states, all the Z projectors are orthogonal to all the
X projectors: X+Z+ = 0, etc. Without loss of generality we can consider the quantum coin and
the associated servomechanism to be part of the Stern-Gerlach apparatus, which is initially in the
state |A〉, with the coin toss corresponding to a unitary time development

|A〉 7→
(

|X◦〉 + |Z◦〉
)

/
√

2. (19.10)

Assume that the spin-half particle is prepared in an initial state |w+〉, where the exact choice
of w is not important for the following discussion, provided it is not +x, −x, +z, or −z. Suppose
that X+ is observed: the quantum coin resulted in the apparatus state X◦ appropriate for a
measurement of Sx, and the outcome of the measurement corresponds to Sx = +1/2. What would
have happened if the quantum coin toss had, instead, resulted in the apparatus state Z◦ appropriate
for a measurement of Sz? To address this question we must adopt some consistent family and
identify the event which serves as the pivot. As in other examples of quantum reasoning, there is
more than one possible family, and the answer given to a counterfactual question can depend upon
which family one uses. Let us begin with a family whose support consists of the four histories

Ψ0 � I �







X◦ �
{

X+,
X−,

Z◦ �
{

Z+,
Z−,

(19.11)

at the times t0 < t1 < t2 < t3, where |Ψ0〉 = |w+〉 ⊗ |A〉 is the initial state. It is represented in
Fig. 19.4 in a diagram resembling those in Figs. 19.2 and 19.3. The quantum coin toss (19.10) takes
place between t1 and t2. The particle reaches the Stern-Gerlach apparatus and the measurement
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occurs between t2 and t3, and at t3 the outcome of the measurement is indicated by one of the
four pointer states (end of Sec. 9.5) X±, Z±. Notice that only the first branching in Fig. 19.4,
between t1 and t2, corresponds to the alternative outcomes of the quantum coin toss, while the
later branching is due to other stochastic quantum processes.

Ψ0

I

X◦

Z◦

X+

X−

Z+

Z−

t0 t1 t2 t3

Figure 19.4: Diagram for counterfactual analysis of the family (19.11).

Suppose Sx was measured with the result X+. To answer the question of what would have
occurred if Sz had been measured instead, start with the X+ vertex in Fig. 19.4, trace the history
back to I at t1 (or Ψ0 at t0) as a pivot, and then go forwards on the lower branch of the diagram
through the Z◦ node. The answer is that one of the two outcomes Z+ or Z− would have occurred,
each possibility having a positive probability which depends on w, which seems reasonable. Rather
than using the nodes in Fig. 19.4, one can equally well use the support of the consistent family
written in the form (19.11), as there is an obvious correspondence between the nodes in the former
and positions of the projectors in the latter. From now on we will base counterfactual reasoning
on expressions of the form (19.11), interpreted as diagrams with nodes and lines in the fashion
indicated in Fig. 19.4.

Now ask a different question. Assuming, once again, that X+ was the actual outcome, what
would have happened if the quantum coin had resulted (as it actually did) in X◦ and thus a
measurement of Sx? To answer this null counterfactual question, we once again trace the actual
history in (19.11) or Fig. 19.4 backwards from X+ at t3 to the I or the Ψ0 node, and then forwards
again along the upper branch through the X◦ node at t2, since we are imagining a world in which
the quantum coin toss had the same result as in the actual world. The answer to the question is
that either X+ or X− would have occurred, each possibility having some positive probability. Since
quantum dynamics is intrinsically stochastic in ways which are not limited to a quantum coin toss,
there is no reason to suppose that what actually did occur, X+, would necessarily have occurred,
given only that we suppose the same outcome, X◦ rather than Z◦, for the coin toss.

Nevertheless, it is possible to obtain a more definitive answer to this null counterfactual question
by using a different consistent family with support

Ψ0 �







[x+] �
{

X◦ � X+,
Z◦ � U+,

[x−] �
{

X◦ � X−,
Z◦ � U−,

(19.12)

where the nodes [x±] at t1, a time which precedes the quantum coin toss, correspond to the spin
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states Sx = ±1/2, and U+ and U− are defined in the next paragraph. The history which results in
X+ can be traced back to the pivot [x+], and then forwards again along the same (upper) branch,
since we are assuming that the quantum coin toss in the alternative (counterfactual) world did
result in the X◦ apparatus state. The result is X+ with probability one. That this is reasonable
can be seen in the following way. The actual measurement outcome X+ shows that the particle
had Sx = +1/2 at time t1 before the measurement took place, since quantum measurements reveal
pre-existing values if one employs a suitable framework. And by choosing [x+] at t1 as the pivot,
one is assuming that Sx had the same value at this time in both the actual and the counterfactual
world. Therefore a later measurement of Sx in the counterfactual world would necessarily result in
X+.

However, we find something odd if we use (19.12) to answer our earlier counterfactual question
of what would have happened if Sz had been measured rather than Sx. Tracing the actual history
backwards from X+ to [x+] and then forwards along the lower branch in the upper part of (19.12),
through Z◦, we reach U+ at t3 rather than the pair Z+, Z−, as in (19.11) or Fig. 19.4. Here U+

is a projector on the state |U+〉 obtained by unitary time evolution of |x+〉|Z◦〉 using (19.9):

|x+〉|Z◦〉 =
(

|z+〉 + |z−〉
)

|Z◦〉/
√

2 7→ |U+〉 =
(

|Z+〉 + |Z−〉
)

/
√

2. (19.13)

Similarly, U− in (19.12) projects on the state obtained by unitary time evolution of |x−〉|Z◦〉. Both
U+ and U− are macroscopic quantum superposition (MQS) states. The appearance of these MQS
states in (19.12) reflects the need to construct a family satisfying the consistency conditions, which
would be violated were we to use the pointer states Z+ and Z− at t3 following the Z◦ nodes at t2.
The fact that consistency conditions sometimes require MQS states rather than pointer states is
significant for analyzing certain quantum paradoxes, as we shall see in later chapters.

The contrasting results obtained using the families in (19.11) and (19.12) illustrate an important
feature of quantum counterfactual reasoning of the type we are discussing: the outcome depends
upon the family of histories which is used, and also upon the pivot. In order to employ the pivot
[x+] rather than I at t1, it is necessary to use a family in which the former occurs, and it cannot
simply be added to the family (19.11) by a process of refinement. To be sure, this dependence upon
the framework and pivot is not limited to the quantum case; it also arises for classical stochastic
counterfactual reasoning. However, in a classical situation the framework is a classical sample space
with its associated event algebra, and framework dependence is rather trivial. One can always, if
necessary, refine the sample space, which corresponds to adding more nodes to a diagram such as
Fig. 19.3, and there is never a problem with incompatibility or MQS states.

Consider a somewhat different question. Suppose the actual measurement outcome corresponds
to Sx = +1/2. Would Sx have had the same value if no measurement had been carried out? To
address this question, we employ an obvious modification of the previous gedanken experiment,
in which the quantum coin leads either to a measurement of Sx, as actually occurred, or to no
measurement at all, by swinging the apparatus out of the way before the arrival of the particle.
Let |N〉 denote the state of the apparatus when it has been swung out of the way. An appropriate
consistent family is one with support

Ψ0 �







[x+] �
{

X◦ � X+,
N � [x+],

[x−] �
{

X◦ � X−,
N � [x−].

(19.14)
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It resembles (19.12), but with Z◦ replaced by N , U+ by [x+], and U− by [x−], since if no measuring
apparatus is present, the particle continues on its way in the same spin state.

We can use this family and the node [x+] at time t1 to answer the question of what would
have happened in a case in which the measurement result was Sx = +1/2 if, contrary to fact, no
measurement had been made. Start with the X+ node at t3, trace it back to [x+] at t1, and then
forwards in time through the N node at t2. The result is [x+], so the particle would have been in
the state Sx = +1/2 at t1 and at later times if no measurement had been made.


