
Chapter 14

Dependent (Contextual) Events

14.1 An Example

Consider two spin-half particles a and b, and suppose that the corresponding Boolean algebra L of
properties on the tensor product space A⊗ B is generated by a sample space of four projectors,

[z+
a ] ⊗ [z+

b
], [z+

a ] ⊗ [z−
b

], [z−a ] ⊗ [x+

b
], [z−a ] ⊗ [x−

b
], (14.1)

which sum to the identity operator I⊗I. Let A = [z+
a ] be the property that Saz = +1/2 for particle

a, and its negation Ã = I − A = [z−a ] the property that Saz = −1/2. Likewise, let B = [z+

b
] and

B̃ = I − B = [z−
b

] be the properties Sbz = +1/2 and Sbz = −1/2 for particle b. Together with the

projectors AB and AB̃, the first two items in (14.1), the Boolean algebra L also contains their sum

A = AB + AB̃ (14.2)

and its negation Ã. On the other hand L does not contain the projector B or its negation B̃, as is
obvious from the fact that these operators do not commute with the last two projectors in (14.1).
Thus when using the framework L one can discuss whether Saz is +1/2 or −1/2 without making
any reference to the spin of particle b. But it only makes sense to discuss whether Sbz is +1/2 or
−1/2 when one knows that Saz = +1/2. That is, one cannot ascribe a value to Sbz in an absolute

sense without making any reference to the spin of particle a.
If it makes sense to talk about a property B when a system possesses the property A but

not otherwise, we shall say that B is a contextual property: it is meaningful only within a certain
context. Also we shall say that B depends on A, and that A is the base of B. (One might also call A
the support of B.) A slightly more restrictive definition is given in Sec. 14.3 below, and generalized
to contextual events which do not have a base. It is important to notice that contextuality and
the corresponding dependence is very much a function of the Boolean algebra L employed for
constructing a quantum description. For example, the Boolean algebra L′ generated by

[z+
a ] ⊗ [z+

b
], [z+

a ] ⊗ [z−
b

], [z−a ] ⊗ [z+

b
], [z−a ] ⊗ [z−

b
] (14.3)

contains both A = [z+
a ] and B = [z+

b
], and thus in this algebra B does not depend upon A. And in

the algebra L′′ generated by

[z+
a ] ⊗ [z+

b
], [z−a ] ⊗ [z+

b
], [x+

a ] ⊗ [z−
b

], [x−

a ] ⊗ [z−
b

], (14.4)
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the property A is contextual and depends on B.

Since quantum theory does not prescribe a single “correct” Boolean algebra of properties to
use in describing a quantum system, whether or not some property is contextual or dependent
on another property is a consequence of the physicist’s choice to describe a quantum system in a
particular way and not in some other way. In particular, when B depends on A in the sense we are
discussing, one should not think of B as being caused by A, as if the two properties were linked by
a physical cause. The dependence is logical, not physical, and has to do with what other properties
are or are not allowed as part of the description based upon a particular Boolean algebra.

14.2 Classical Analogy

It is possible to construct an analogy for quantum contextual properties based on purely classical
ideas. The analogy is somewhat artificial, but even its artificial character will help us understand
better why dependency is to be expected in quantum theory, when it normally does not show up
in classical physics. Let x and y be real numbers which can take on any values between 0 and 1,
so that pairs (x, y) are points in the unit square, Fig. 14.1. In classical statistical mechanics one
sometimes divides up the phase space into nonoverlapping cells (Sec. 5.1), and in a similar way we
shall divide up the unit square into cells of finite area, and regard each cell as an element of the
sample space of a probabilistic theory. The sample space corresponding to the cells in Fig. 14.1(a)
consists of 4 mutually exclusive properties

{0 ≤ x < 1/2, 0 ≤ y < 1/2}, {0 ≤ x < 1/2, 1/2 ≤ y ≤ 1},
{1/2 ≤ x ≤ 1, 0 ≤ y < 1/2}, {1/2 ≤ x ≤ 1, 1/2 ≤ y ≤ 1}.

(14.5)

Let A be the property 0 ≤ x < 1/2, so its complement Ã is 1/2 ≤ x ≤ 1, and let B be the property
0 ≤ y < 1/2, so B̃ is 1/2 ≤ y ≤ 1. Then the four sets in (14.5) correspond to the properties A∧B,
A∧ B̃, Ã∧B, Ã∧ B̃. It is then obvious that the Boolean algebra of properties generated by (14.5)
contains both A and B, so (14.5) is analogous in this respect to the quantum sample space (14.3).
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Figure 14.1: Unit square in the x, y plane: (a) shows the set of cells in (14.5), (b) the set of cells
in (14.6), and (c) the cells in a common refinement (see text). Property A is represented by the
vertical rectangular cell on the left, and B by the horizontal rectangular cell (not present in (b))
on the bottom. The gray region represents A ∧ B.

An alternative choice for cells is shown in Fig. 14.1(b), where the four mutually exclusive
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properties are

{0 ≤ x < 1/2, 0 ≤ y < 1/2}, {0 ≤ x < 1/2, 1/2 ≤ y ≤ 1},
{1/2 ≤ x ≤ 1, 0 ≤ y < 2/3}, {1/2 ≤ x ≤ 1, 2/3 ≤ y ≤ 1}.

(14.6)

If A and B are defined in the same way as before, the new algebra of properties generated by (14.6)
contains A and A ∧ B, but does not contain B. In this respect it is analogous to (14.1) in the
quantum case, and B is a contextual or dependent property: it only makes sense to ask whether the
system has or does not have the property B when the property A is true, i.e., when x is between
0 and 1/2, but the same question does not make sense when x is between 1/2 and 1, that is, when
A is false.

Isn’t this just some sort of formal nitpicking? Why not simply refine the sample space of
Fig. 14.1(b) by using the larger collection of cells shown in Fig. 14.1(c)? The corresponding Boolean
algebra of properties includes all those in (14.6), so we have not the lost the ability to describe
whatever we would like to describe, and now B as well as A is part of the algebra of properties,
so dependency is no longer of any concern. Such a refinement of the sample space can always be
employed in classical statistical mechanics. However, a similar type of refinement may or may not
be possible in quantum mechanics. There is no way to refine the sample space in (14.1), for the
four projectors in that list already project onto one dimensional subspaces, which is as far as a
quantum refinement can go. The move from (b) to (c) in Fig. 14.1, which conveniently gets rid
of contextual properties in a classical context, will not work in the case of (14.1); the latter is an
example of an irreducible contextuality.

To be more specific, the refinement in Fig. 14.1(c) is obtained by forming the products of the
indicators for B, B̃, B′, and B̃′ with one another and with A and Ã, where B′ is the property
0 ≤ y < 2/3. The analogous process for (14.1) would require taking products of projectors such
as [z+

b
] and [x+

b
], but since they do not commute with each other, their product is not a projector.

That non-commutativity of the projectors is at the heart of the contextuality associated with (14.1)
can also be seen by considering two classical spinning objects a and b with angular momenta La

and Lb, and interpreting [z+
a ] and [z−a ] in (14.1) as Laz ≥ 0 and Laz < 0, etc. In the classical case

there is no difficulty refining the sample space of (14.1) to get rid of dependency, for [z+

b
][x+

b
] is

the property Lbz ≥ 0 ∧ Lbx ≥ 0, which makes perfectly good (classical) sense. But its quantum
counterpart for a spin-half particle has no physical meaning.

14.3 Contextual Properties and Conditional Probabilities

If A and B are elements of a Boolean algebra L for which a probability distribution is defined, then

Pr(B | A) = Pr(AB)/ Pr(A) (14.7)

is defined provided Pr(A) is greater than zero. If, however, B is not an element of L, then Pr(B) is
not defined and, as a consequence, Pr(A | B) is also not defined. In view of these remarks it makes
sense to define B as a contextual property which depends upon A, A is the base of B, provided
Pr(B | A) is positive (which implies Pr(AB) > 0), whereas Pr(B) is undefined. This definition
is stricter than the one in Sec. 14.1, but the cases it eliminates—those with Pr(B | A) = 0—are
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in practice rather uninteresting. In addition, one is usually interested in situations where the
dependence is irreducible, i.e., it cannot be eliminated by appropriately refining the sample space,
unlike the classical example in Sec. 14.2.

One can extend this definition to events which depend on other contextual events. For example,
let A, B, and C be commuting projectors, and suppose A, AB, and ABC belong to the Boolean
algebra, but B and C do not. Then as long as

Pr(C | AB) = Pr(ABC)/ Pr(AB) (14.8)

is positive, we shall say that C depends on B (or on AB), and B depends on A. Note that if (14.8)
is positive, so is Pr(AB), and thus Pr(B | A), (14.7), is also positive.

There are situations in which the properties A and B, represented by commuting projectors,
are contextual even though neither can be said to depend upon or be the base of the other. That
is, AB belongs to the Boolean algebra L and has positive probability, but neither A nor B belongs
to L. In this case neither Pr(A | B) nor Pr(B | A) is defined, so one cannot say that B depends
on A or A on B, though one might refer to them as “codependent”. As an example, let A and B
be two Hilbert spaces of dimension 2 and 3, respectively, with orthonormal bases {|0a〉, |1a〉} and
{|0b〉, |1b〉, |2b〉}. In addition, define

|+b〉 =
(

|0b〉 + |1b〉
)

/
√

2, |−b〉 =
(

|0b〉 − |1b〉
)

/
√

2, (14.9)

and |+a〉 and |−a〉 in a similar way. Then the six kets

|0a〉 ⊗ |0b〉, |1a〉 ⊗ |+b〉, |+a〉 ⊗ |2b〉,
|0a〉 ⊗ |1b〉, |1a〉 ⊗ |−b〉, |−a〉 ⊗ |2b〉,

(14.10)

form an orthonormal basis for A⊗B, and the corresponding projectors generate a Boolean algebra
L. If A = [0a] ⊗ I and B = I ⊗ [0b], then L contains AB, corresponding to the first ket in
(14.10), but neither A nor B belongs to L, since [0a] does not commute with [+a], and [0b] does
not commute with [+b]. More complicated cases of “codependency” are also possible, as when L
contains the product ABC of three commuting projectors, but none of the six projectors A, B, C,
AB, BC, and AC belong to L.

14.4 Dependent Events in Histories

In precisely the same way that quantum properties can be dependent upon other quantum proper-
ties of a system at a single time, a quantum event—a property of a quantum system at a particular
time—can be dependent upon a quantum event at some different time. That is, in the family of
consistent histories used to describe the time development of a quantum system, it may be the
case that the projector B for an event at a particular time does not occur by itself in the Boolean
algebra L of histories, but is only present if some other event A at some different time is present in
the same history. Then B depends on A, or A is the base of B, using the terminology introduced
earlier. And there are situations in which a third event C at still another time depends on B, so
that it only makes sense to discuss C as part of a history in which both A and B occur. Sometimes
this contextuality can be removed by refining the history sample space, but in other cases it is
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irreducible, either because a refinement is prevented by non-commuting projectors, or because it
would result in a violation of consistency conditions.

Families of histories often contain contextual events that depend upon a base that occurs at an
earlier time. Such a family is said to show “branch dependence”. A particular case is a family of
histories with a single initial state Ψ0. If one uses the Boolean algebra suggested for that case in
Sec. 11.5, then all the later events in all the histories of interest are (ultimately) dependent upon
the initial event Ψ0. This is because the only history in which the negation Ψ̃0 = I − Ψ0 of the
initial event occurs is the history Z in (11.14), and in that history only the identity occurs at later
times. It may or may not be possible to refine such a family in order to remove some or all of the
dependence upon Ψ0.

SG

M

E

F

Ē

F̄
t0 t1 t2

Figure 14.2: Upper and lower beams emerging from a Stern-Gerlach magnet SG. An atom in the
lower beam passes through an additional region of uniform magnetic field M . The square boxes
indicate regions in space, and the time when the atom will pass through a given region is indicated
at the bottom of the figure.

An example of branch dependence involving something other than the initial state is shown
in Fig. 14.2. A spin-half particle passes through a Stern-Gerlach magnet (Sec. 17.2) and emerges
moving at an upwards angle if Sz = +1/2, or a downwards angle if Sz = −1/2. Let E and F be
projectors on two regions in space which include the upward- and downward-moving wave packets
at time t1, assuming a state |Ψ0〉 (space and spin wave function of the particle) at time t0. In the
interval between t1 and t2 the downward-moving wave packet passes through a region M of uniform
magnetic field which causes the spin state to rotate by 90◦ from Sz = −1/2 to Sx = +1/2. This
situation can be described using a consistent family whose support is the two histories

Ψ0 � E � [z+],

Ψ0 � F � [x+],
(14.11)

which can also be written in the form

Ψ0 �
{

E � [z+],

F � [x+],
(14.12)

where the initial element common to both histories is indicated only once. Consistency follows from
the fact that the spatial wave functions at the final time t2 have negligible overlap, even though
they are not explicitly referred to in (14.12). Whatever may be the zero-weight histories, it is at
once evident that neither of the two histories

Ψ0 � I � [z+], Ψ0 � I � [x+] (14.13)
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can occur in the Boolean algebra, since the projector for the first history in (14.13) does not com-
mute with that for the second history in (14.12), and the second history in (14.13) is incompatible
with the first history in (14.12). Consequently, in the consistent family (14.12) [z+] at t2 depends
upon E at t1, and [x+] at t2 depends upon F at t1. Furthermore, as the necessity for this depen-
dency can be traced to non-commuting projectors, the dependency is irreducible: one cannot get
rid of it by refining the consistent family.

An alternative way of thinking about the same gedanken experiment is to note that at t2 the
wave packets do not overlap, so we can find mutually orthogonal projectors Ē and F̄ on non-
overlapping regions of space, Fig. 14.2, which include the upward- and downward-moving parts of
the wave packet at this time. Consider the consistent family whose support is the two histories

Ψ0 � I � {[z+]Ē, [x+]F̄}, (14.14)

where the notation is a variant of that in (14.12): the two events inside the curly brackets are both
at the time t2, so one history ends with the projector [z+]Ē, the other with the projector [x+]F̄ .
Once again, the final spin states [z+] and [x+] are dependent events, but now [z+] depends upon
Ē and [x+] upon F̄ , so the bases occur at the same time as the contextual events which depend on
them. This is a situation which resembles (14.1), with Ē and F̄ playing the roles of [z+

a ] and [z−a ],
respectively, while the spin projectors in (14.14) correspond to those of the b particle in (14.1).
One could also move the regions Ē and F̄ further to the right in Fig. 14.2, and obtain a family of
histories

Ψ0 � I �
{

[z+] � Ē,

[x+] � F̄ ,
(14.15)

for the times t0 < t1 < t2 < t3, in which [z+] and [x+] are dependent on the later events Ē and F̄ .
Dependence on later events also arises, for certain families of histories, in the next example

we shall consider, which is a variant of the toy model discussed in Sec. 13.5. Figure 14.3 shows a
device which is like a Mach-Zehnder interferometer, but the second beam splitter has been replaced
by a weakly-coupled measuring device M , with initial (“ready”) state |M〉. The relevant unitary
transformations are

|Ψ0〉 = |0a〉 ⊗ |M〉 7→
(

|1c〉 + |1d〉
)

/
√

2 ⊗ |M〉 (14.16)

for the time interval t0 to t1, and

|1c〉 ⊗ |M〉 7→ |2f〉 ⊗
(

|M〉 + |M c〉
)

/
√

2,

|1d〉 ⊗ |M〉 7→ |2e〉 ⊗
(

|M〉 + |Md〉
)

/
√

2
(14.17)

for t1 to t2. Here |0a〉 is a wave packet approaching the beam splitter in channel a at t0, |1c〉 is
a wave packet in the c arm at time t1, and so forth. The time t1 is chosen so that the particle is
inside the device, somewhere between the initial beam splitter and the detector M , whereas at t2
it has emerged in e or f . The states |M〉, |M c〉, and |Md〉 of the detector are mutually orthogonal
and normalized. Combining (14.16) and (14.17) yields a unitary time development

|Ψ0〉 7→
(

|2e〉 ⊗ |Md〉 + |2f〉 ⊗ |M c〉 +
√

2|2s〉|M〉
)

/2 (14.18)

from t0 to t2, where
|2s〉 =

(

|2e〉 + |2f〉
)

/
√

2 (14.19)



14.4. DEPENDENT EVENTS IN HISTORIES 173

a

c

c

d

d

e

f

B

M

Figure 14.3: Mach-Zehnder interferometer with the second beam splitter replaced by a measuring
device M .

is a superposition state of the final particle wave packets.

Consider the consistent family for t0 < t1 < t2 whose support is the three histories

Ψ0 � I �
{

[2e] ⊗ Md, [2f ] ⊗ M c, [2s] ⊗ M
}

. (14.20)

Since the projector [2s] does not commute with the projectors [2e] and [2f ], it is clear that [2e],
[2f ], and [2s] are dependent upon the detector states M d, M c, and M at the (same) time t2, and
one has conditional probabilities

Pr(2e | Md

2 ) = Pr(2f | M c

2) = Pr(2s | M2) = 1. (14.21)

On the other hand, Pr(Md
2 | 2e), Pr(M c

2 | 2f), and Pr(M2 | 2s) are not defined. (Following our usual
practice, Ψ0 is not shown explicitly as one of the conditions.) One could also say that 2e and 2f
are both dependent upon the state M t with projector M c +Md, corresponding to the fact that the
detector has detected something.

Some understanding of the physical significance of this dependency can be obtained by supposing
that later experiments are carried out to confirm (14.21). One can check that the particle emerging
from M is in the e channel if the detector state is M d, or in f if the detector is in M c, by
placing detectors in the e and f channels. One could also verify that the particle emerges in the
superposition state s in a case in which it is not detected (the detector is still in state M at t2)
by the strategy of adding two more mirrors to bring the e and f channels back together again at
a beam splitter which is followed by detectors. Of course, this last measurement cannot be carried
out if there are already detectors in the e and f channels, reflecting the fact that the property
2s is incompatible with 2e and 2f . (A similar pair of incompatible measurements is discussed in
Sec. 18.4, see Fig. 18.3.)

An alternative consistent family for t0 < t1 < t2 has support

Ψ0 �







[1c] � M c,

[1d] � Md,

[1r] � M,

(14.22)
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where
|1r〉 =

(

|1c〉 + |1d〉
)

/
√

2 (14.23)

is a superposition state of the particle before it reaches M . From the fact that [1r] does not commute
with [1c] or [1d], it is obvious that the particle states at the intermediate time t1 in (14.22) must
depend upon the later detector states: [1c] upon M c, [1d] upon Md, and [1r] upon M . Indeed,

Pr(1c | M c

2) = Pr(1d | Md

2 ) = Pr(1r | M2) = 1, (14.24)

whereas Pr(M c
2 | 1c), Pr(Md

2 | 1d) and Pr(M2 | 1r), the conditional probabilities with their argu-
ments in reverse order, are not defined. A very similar dependence upon later events occurs in the
family (13.46) associated with weak measurements in the arms of a Mach-Zehnder interferometer,
Sec. 13.5.

It may seem odd that earlier contextual events can depend on later events. Does this mean
that the future is somehow influencing the past? As already noted in Sec. 14.1, it is important
not to confuse the term depends on, used to characterize the logical relationship among events in
a consistent family, with a notion of physical influence or causality. The following analogy may be
helpful. Think of a historian writing a history of the French revolution. He will not limit himself to
the events of the revolution itself, but will try and show that these events were preceded by others
which, while their significance may not have been evident at the time, can in retrospect be seen
as useful for understanding what happened later. In selecting the type of prior events which enter
his account, the historian will use his knowledge of what happened later. It is not a question of
later events somehow “causing” the earlier events, at least as causality is ordinarily understood.
Instead, those earlier events are introduced into the account which are useful for understanding
the later events. While classical histories cannot provide a perfect analogy with quantum histories,
this example may help in understanding how the earlier particle states in (14.22) can be said to
“depend on” the later states of M without being “caused by” them.

To be sure, one often encounters quantum descriptions in which earlier events, such as the initial
state, are the bases of later dependent events, and it is rather natural in such cases to think of
(at least some of) the later events as actually caused by the earlier events. This may be why later
contextual events that depend on earlier events somehow seem more intuitively reasonable than
the reverse. Nonetheless, the ideas of causation and contextuality are quire distinct, and confusing
the two can lead to paradoxes.


