
Chapter 10

Consistent Histories

10.1 Chain Operators and Weights

The previous chapter showed how the Born rule can be used to assign probabilities to a sample
space of histories based upon an initial state |ψ0〉 at t0, and an orthonormal basis {|φα

1 〉} of the
Hilbert space at a later time t1. In this chapter we show how an extension of the Born rule can be
used to assign probabilities to much more general families of histories, including histories defined
at an arbitrary number of different times and using decompositions of the identity which are not
limited to pure states, provided certain consistency conditions are satisfied.

We begin by rewriting the Born weight (9.22) for the history

Y α = [ψ0] � [φα
1 ] (10.1)

in the following way:

W (Y α) = |〈φα
1 |T (t1, t0)|ψ0〉|

2 = 〈ψ0|T (t0, t1)|φ
α
1 〉〈φ

α
1 |T (t1, t0)|ψ0〉

= Tr
(

[ψ0]T (t0, t1) [φα
1 ]T (t1, t0)

)

= Tr
(

K†(Y α)K(Y α)
)

,
(10.2)

where the chain operator K(Y ) and its adjoint are given by the expressions

K(F0 � F1) = F1T (t1, t0)F0, K†(F0 � F1) = F0T (t0, t1)F1 (10.3)

in the case of a history Y = F0 � F1 involving just two times; recall that T (t0, t1) = T †(t1, t0).
The steps from the left side to the right side of (10.2) are straightforward but not trivial, and the
reader may wish to work through them. Recall that if |ψ〉 is any normalized ket, [ψ] = |ψ〉〈ψ| is the
projector onto the one-dimensional subspace containing |ψ〉, and 〈ψ|A|ψ〉 is equal to Tr(|ψ〉〈ψ|A) =
Tr([ψ]A).

For a general history of the form

Y = F0 � F1 � F2 � · · · � Ff (10.4)

with events at times t0 < t1 < t2 < · · · < tf the chain operator is defined as

K(Y ) = FfT (tf , tf−1)Ff−1T (tf−1, tf−2) · · ·T (t1, t0)F0, (10.5)
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and its adjoint is given by the expression

K†(Y ) = F0T (t0, t1)F1T (t1, t2) · · ·T (tf−1, tf )Ff . (10.6)

Notice that the adjoint is formed by replacing each � in (10.4) separating Fj from Fj+1 by
T (tj , tj+1). In both K and K†, each argument of any given T is adjacent to a projector rep-
resenting an event at this particular time. One could just as well define K(Y ) using (10.6) and its
adjoint K†(Y ) using (10.5). The definition used here is slightly more convenient for some purposes,
but either convention yields exactly the same expressions for weights and consistency conditions,
so there is no compelling reason to employ one rather than the other. Note that Y is an operator
on the history Hilbert space H̆, and K(Y ) an operator on the original Hilbert space H. Operators
of these two types should not be confused with one another.

The definition of K(Y ) in (10.5) makes good sense when the Fj in (10.4) are any operators
on the Hilbert space, not just projectors. In addition, K can be extended by linearity to sums of
tensor product operators of the type (10.4):

K(Y ′ + Y ′′ + Y ′′′ + · · · ) = K(Y ′) +K(Y ′′) +K(Y ′′′) + · · · . (10.7)

In this way, K becomes a linear map of operators on the history space H̆ to operators on the Hilbert
space H of a system at a single time, and it is sometimes useful to employ this extended definition.

The sequence of operators which make up the “chain” on the right side of (10.6) is in the same
order as the sequence of times t0 < t1 < · · · tf . This is important; one does not get the same answer
(in general) if the order is different. Thus for f = 2, with t0 < t1 < t2, the operator defined by
(10.6) is different from

L†(Y ) = F0T (t0, t2)F2T (t2, t1)F1, (10.8)

and it is K(Y ), not L(Y ) which yields physically sensible results.
When all the projectors in a history are onto pure states, the chain operator has a particularly

simple form when written in terms of dyads. For example, if

Y = |ψ0〉〈ψ0| � |φ1〉〈φ1| � |ω2〉〈ω2|, (10.9)

then the chain operator

K(Y ) = 〈ω2|T (t2, t1)|φ1〉 · 〈φ1|T (t1, t0)|ψ0〉 · |ω2〉〈ψ0| (10.10)

is a product of complex numbers, often called transition amplitudes, with a dyad |ω2〉〈ψ0| formed
in an obvious way from the first and last projectors in the history.

Given any projector Y on the history space H̆, we assign to it a non-negative weight

W (Y ) = Tr[K†(Y )K(Y )] = 〈K(Y ),K(Y )〉, (10.11)

where the angular brackets on the right side denote an operator inner product whose general
definition is

〈A,B〉 := Tr[A†B], (10.12)

with A and B any two operators on H. In an infinite-dimensional space the formula (10.12) does
not always make sense, since the trace of an operator is not defined if one cannot write it as
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a convergent sum. Technical issues can be avoided by restricting oneself to a finite-dimensional
Hilbert space, where the trace is always defined, or to operators on infinite-dimensional spaces for
which (10.12) does makes sense.

Operators on a Hilbert space H form a linear vector space under addition and multiplication
by (complex) scalars. If H is n dimensional, its operators form an n2-dimensional Hilbert space if
one uses (10.12) to define the inner product. This inner product has all the usual properties: it is
antilinear in its left argument, linear in its right argument, and satisfies:

〈A,B〉∗ = 〈B,A〉, 〈A,A〉 ≥ 0, (10.13)

with 〈A,A〉 = 0 only if A = 0; see (3.92). Consequently, the weight W (Y ) defined by (10.11) is
a non-negative real number, and it is zero if and only if the chain operator K(Y ) is zero. If one
writes the operators as matrices using some fixed orthonormal basis of H, one can think of them as
n2-component vectors, where each matrix element is one of the components of the vector. Addition
of operators and multiplying an operator by a scalar then follow the same rules as for vectors, and
the same is true of inner products. In particular, 〈A,A〉 is the sum of the absolute squares of the
n2 matrix elements of A.

If 〈A,B〉 = 0, we shall say that the operators A and B are (mutually) orthogonal. Just as in the
case of vectors in the Hilbert space, 〈A,B〉 = 0 implies 〈B,A〉 = 0, so orthogonality is a symmetrical
relationship between A and B. Earlier we introduced a different definition of operator orthogonality
by saying that two projectors P and Q are orthogonal if and only if PQ = 0. Fortunately, the new
definition of orthogonality is an extension of the earlier one: if P and Q are projectors, they are
also positive operators, and the argument following (3.93) in Sec. 3.9 shows that Tr[PQ] = 0 if and
only if PQ = 0.

It is possible to have a history with a non-vanishing projector Y for which K(Y ) = 0. These
histories (and only these histories) have zero weight. We shall say that they are dynamically

impossible. They never occur, because they have probability zero. For example, [z+] � [z−] for a
spin half particle is dynamically impossible in the case of trivial dynamics, T (t′, t) = I.

10.2 Consistency Conditions and Consistent Families

Classical weights of the sort used to assign probabilities in stochastic processes such as a random
walk, see Sec. 9.1, have the property that they are additive functions on the sample space: if E
and F are two disjoint collections of histories from the sample space, then, as in (9.11),

W (E ∪ F ) = W (E) +W (F ). (10.14)

If quantum weights are to function the same way as classical weights, they too must satisfy (10.14),
or its quantum analog. Suppose that our sample space of histories is a decomposition {Y α} of the
history identity. Any projector Y in the corresponding Boolean algebra can be written as:

Y =
∑

α

παY α, (10.15)

where each πα is 0 or 1. Additivity of W then corresponds to:

W (Y ) =
∑

α

παW (Y α). (10.16)
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However, the weights defined using (10.11) do not, in general, satisfy (10.16). Since the chain
operator is a linear map, (10.15) implies that:

K(Y ) =
∑

α

παK(Y α). (10.17)

If we insert this in (10.11), and use the (anti)linearity of the operator inner product (note that the
πα are real), the result is

W (Y ) =
∑

α

∑

β

παπβ〈K(Y α),K(Y β)〉, (10.18)

whereas the right side of (10.16) is given by:

∑

α

παW (Y α) =
∑

α

πα〈K(Y α),K(Y α)〉. (10.19)

In general, (10.18) and (10.19) will be different. However, in the case in which

〈K(Y α),K(Y β)〉 = 0 for α 6= β, (10.20)

only the diagonal terms α = β remain in the sum (10.18), so it is the same as (10.19), and the
additivity condition (10.16) will be satisfied. Thus a sufficient condition for the quantum weights
to be additive is that the chain operators associated with the different histories in the sample space
be mutually orthogonal in terms of the inner product defined in (10.12). The approach we shall
adopt is to limit ourselves to sample spaces of quantum histories for which the equalities in (10.20),
known as consistency conditions, are fulfilled. Such sample spaces, or the corresponding Boolean
algebras, will be referred to as consistent families of histories, or frameworks.

The consistency conditions in (10.20) are also called “decoherence conditions”, and the terms
“decoherent family”, “consistent set” and “decoherent set” are sometimes used to denote a consis-
tent family or framework. The adjective “consistent”, as we have defined it, applies to families of
histories, and not to individual histories. However, a single history Y can be said to be inconsistent
if there is no consistent family which contains it as one of the members of its Boolean algebra. For
an example see Sec. 11.8.

A consequence of the consistency conditions is the following. Let Y and Ȳ be any two history
projectors belonging to the Boolean algebra generated by the decomposition {Y α}. Then

Y Ȳ = 0 implies 〈K(Y ),K(Ȳ )〉 = 0. (10.21)

To see that this is true, write Y and Ȳ in the form (10.15), using coefficients π̄α for Ȳ . Then

Y Ȳ =
∑

α

παπ̄αY α, (10.22)

so Y Ȳ = 0 implies that

παπ̄α = 0 (10.23)
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for every α. Next use the expansion (10.17) for both K(Y ) and K(Ȳ ), so that

〈K(Y ),K(Ȳ )〉 =
∑

αβ

παπ̄β〈K(Y α),K(Y β)〉. (10.24)

The consistency conditions (10.20) eliminate the terms with α 6= β from the sum, and (10.23)
eliminates those with α = β, so one arrives at (10.21). On the other hand, (10.21) implies (10.20) as
a special case, since two different projectors in the decomposition {Y α} are necessarily orthogonal
to each other. Consequently, (10.20) and (10.21) are equivalent, and either one can serve as a
definition of a consistent family.

While (10.20) is sufficient to ensure the additivity of W , (10.16), it is by no means necessary.
It suffices to have

Re[〈K(Y α),K(Y β)〉] = 0 for α 6= β, (10.25)

where Re denotes the real part. We shall refer to these as “weak consistency conditions.” Even
weaker conditions may work in certain cases. The subject has not been exhaustively studied. How-
ever, the conditions in (10.20) are easier to apply in actual calculations than are any of the weaker
conditions, and seem adequate to cover all situations of physical interest which have been studied
up till now. Consequently, we shall refer to them from now on as “the consistency conditions”, while
leaving open the possibility that further study may indicate the need to use a weaker condition
that enlarges the class of consistent families.

What about sample spaces for which the consistency condition (10.20) is not satisfied? What
shall be our attitude towards inconsistent families of histories? Within the consistent history
approach to quantum theory such families are “meaningless” in the sense that there is no way
to assign them probabilities within the context of a stochastic time development governed by the
laws of quantum dynamics. This is not the first time we have encountered something which is
“meaningless” within a quantum formalism. In the usual Hilbert space formulation of quantum
theory, it makes sense to describe a spin half particle as having its angular momentum along the
+z axis, or along the +x axis, but trying to combine these two descriptions using “and” leads
to something which lacks any meaning, because it does not correspond to any subspace in the
quantum Hilbert space. See the discussion in Sec. 4.6. Consistency, on the other hand, is a more
stringent condition, because a family of histories corresponding to an acceptable Boolean algebra
of projectors on the history Hilbert space may still fail to satisfy the consistency conditions.

Consistency is always something which is relative to dynamical laws. As will be seen in an
example in Sec. 10.3 below, changing the dynamics can render a consistent family inconsistent,
or vice versa. Note that the conditions in (10.20) refer to an isolated quantum system. If a
system is not isolated and is interacting with its environment, one must apply the consistency
conditions to the system together with its environment, regarding the combination as an isolated
system. A consistent family of histories for a system isolated from its environment may turn out
to be inconsistent if interactions with the environment are “turned on.” Conversely, interactions
with the environment can sometimes ensure the consistency of a family of histories which would
be inconsistent were the system isolated. Environmental effects go under the general heading of
decoherence. (The term does not refer to the same thing as “decoherent” in “decoherent histories”,
though the two are related, and this sometimes causes confusion.) Decoherence is an active field
of research, and while there has been considerable progress, there is much that is still not well
understood. A brief introduction to the subject will be found in Ch. 26.
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Must the orthogonality conditions in (10.20) be satisfied exactly, or should one allow small
deviations from consistency? Inasmuch as the consistency conditions form part of the axiomatic
structure of quantum theory, in the same sense as the Born rule discussed in the previous chapter,
it is natural to require that they be satisfied exactly. On the other hand, as first pointed out
by Dowker and Kent, it is plausible that when the off-diagonal terms 〈K(Y α),K(Y β)〉 in (10.24)
are small compared to the diagonal terms 〈K(Y α),K(Y α)〉, one can find a “nearby” family of
histories in which the consistency conditions are satisfied exactly. A nearby family is one in which
the original projectors used to define the events (properties at a particular time) making up the
histories in the family are replaced by projectors onto nearby subspaces of the same dimension. For
example, consider a projector [φ] onto the subspace spanned by a normalized ket |φ〉. The subspace
[χ] spanned by a second normalized ket |χ〉 can be said to be near to [φ] provided |〈χ|φ〉|2 is close
to 1; that is, if the angle ε defined by

sin2(ε) = 1 − |〈χ|φ〉|2 = 1

2
Tr

[

([χ] − [φ])2
]

(10.26)

is small. Notice that this measure is left unchanged by unitary time evolution: if |χ〉 is near to |φ〉
then T (t′, t)|χ〉 is near to T (t′, t)|φ〉. For example, if |φ〉 corresponds to Sz = +1/2 for a spin-half
particle, then a nearby |χ〉 would correspond to Sw = +1/2 for a direction w close to the positive
z axis. Or if φ(x) is a wave packet in one dimension, χ(x) might be the wave packet with its tails
cut off, and then normalized. Of course, the histories in the nearby family are not the same as
those in the original family. Nonetheless, since the subspaces which define the events are close to
the original subspaces, their physical interpretation will be rather similar. In that case one would
not commit a serious error by ignoring a small lack of consistency in the original family.

10.3 Examples of Consistent and Inconsistent Families

As a first example, consider the family of two-time histories

Y k = [ψ0] � [φk
1], Z = (I − [ψ0]) � I (10.27)

used in Sec. 9.3 when discussing the Born rule. The chain operators

K(Y k) = [φk
1]T (t1, t0)[ψ0] = 〈φk

1|T (t1, t0)|ψ0〉 · |φ
k
1〉〈ψ0| (10.28)

are mutually orthogonal because

〈K(Y k),K(Y l)〉 ∝ Tr
(

|ψ0〉〈φ
k
1|φ

l
1〉〈ψ0|

)

= 〈ψ0|ψ0〉〈φ
k
1|φ

l
1〉 (10.29)

is zero for k 6= l. To complete the argument, note that

〈K(Y k),K(Z)〉 = Tr
(

[ψ0]T (t0, t1)[φ
k
1]T (t1, t0)(I − [ψ0])

)

(10.30)

is zero, because one can cycle [ψ0] from the beginning to the end of the trace, and its product with
(I − [ψ0]) vanishes. Consequently, all the histories discussed in Ch. 9 are consistent, which justifies
our having omitted any discussion of consistency when introducing the Born rule.
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The same argument works if we consider a more general situation in which the initial state is
a projector Ψ0 onto a subspace which could have a dimension greater than 1, and instead of an
orthonormal basis we consider a general decomposition of the identity in projectors

I =
∑

k

P k (10.31)

at time t1. The family of two-time histories

Y k = Ψ0 � P k, Z = (I − Ψ0) � I (10.32)

is again consistent, since for k 6= l

〈K(Y k),K(Y l)〉 ∝ Tr
(

Ψ0T (t0, t1)P
kP lT (t1, t0)Ψ0

)

= 0 (10.33)

because P kP l = 0, while 〈K(Y k), Z〉 = 0 follows, as in (10.30), from cycling operators inside the
trace. (This argument is a special case of the general result in Sec. 11.3 that any family based on
just two times is automatically consistent.) The probability of Y k is given by

Pr(Y k) = Tr
(

P kT (t1, t0)Ψ0T (t0, t1)
)

/Tr (Ψ0) , (10.34)

which we shall refer to as the generalized Born rule. The factor of 1/Tr(Ψ0) is needed to normalize
the probability when Ψ0 projects onto a space of dimension greater than 1.

Another situation in which the consistency conditions are automatically satisfied is that of a
unitary family as defined in Sec. 8.7. For a given initial state such a family contains one unitary
history, (8.41), obtained by unitary time development of this initial state, and various nonunitary
histories, such as (8.42). It is straightforward to show that the chain operator for any nonunitary
history in such a family is zero, and that the chain operators for unitary histories with different
initial states (belonging to the same decomposition of the identity) are orthogonal to one another.
Thus the consistency conditions are satisfied. If the initial condition assigns probability 1 to
a particular initial state, the corresponding unitary history occurs with probability 1, and zero
probability is assigned to every other history in the family.

To find an example of an inconsistent family, one must look at histories defined at three or more
times. Here is a fairly simple example for a spin-half particle. The five history projectors

Y 0 = [z−] � I � I,

Y 1 = [z+] � [x+] � [z+],

Y 2 = [z+] � [x+] � [z−],

Y 3 = [z+] � [x−] � [z+],

Y 4 = [z+] � [x−] � [z−]

(10.35)

defined at the three times t0 < t1 < t2 form a decomposition of the history identity, and thus a
sample space of histories. However, for trivial dynamics, T = I, the family is inconsistent. To show
this it suffices to compute the chain operators using (10.10). In particular,

K(Y 1) = |〈z+|x+〉|2 · |z+〉〈z+|,

K(Y 3) = |〈z+|x−〉|2 · |z+〉〈z+|
(10.36)



126 CHAPTER 10. CONSISTENT HISTORIES

are not orthogonal, since |〈z+|x+〉|2 and |〈z+|x−〉|2 are both equal to 1/2; indeed,

〈K(Y 1),K(Y 3)〉 = 1/4. (10.37)

Similarly, K(Y 2) and K(Y 4) are not orthogonal, whereas K(Y 1) is orthogonal to K(Y 2), and
K(Y 3) to K(Y 4). In addition, K(Y 0) is orthogonal to the chain operators of the other histories.
Since consistency requires that all pairs of chain operators for distinct histories in the sample space
be orthogonal, this is not a consistent family.

On the other hand, the same five histories in (10.35) can form a consistent family if one uses a
suitable dynamics. Suppose that there is a magnetic field along the y axis, and the time intervals
t1 − t0 and t2 − t1 are chosen in such a way that

T (t1, t0) = T (t2, t1) = R, (10.38)

where R is the unitary operator such that

R|z+〉 = |x+〉, R|z−〉 = |x−〉,

R|x+〉 = |z−〉, R|x−〉 = −|z+〉,
(10.39)

where the second line is a consequence of the first when one uses the definitions in (4.14). With
this dynamics, Y 2 is a unitary history whose chain operator is orthogonal to that of Y 0, because
of the orthogonal initial states, while the chain operators for Y 1, Y 3, and Y 4 vanish. Thus the
consistency conditions are satisfied. That the family (10.35) is consistent for one choice of dynamics
and inconsistent for another serves to emphasize the important fact, noted earlier, that consistency
depends upon the dynamical law of time evolution. This is not surprising given that the probabilities
assigned to histories depend upon the dynamical law.

A number of additional examples of consistent and inconsistent histories will be discussed in
Chs. 12 and 13. However, checking consistency by the process of finding chain operators for every
history in a sample space is rather tedious and inefficient. Some general principles and various
tricks explained in the next chapter make this process a lot easier. However, the reader may prefer
to move on to the examples, and only refer back to Ch. 11 as needed.

10.4 Refinement and Compatibility

The refinement of a sample space of histories was discussed in Sec. 8.6. In essence, the idea is
the same as for any other quantum sample space: some or perhaps all of the projectors in a
decomposition of the identity are replaced by two or more finer projectors whose sum is the coarser
projector. It is important to note that even if the coarser family one starts with is consistent, the
finer family need not be consistent.

Suppose that Z = {Zβ} is a consistent sample space of histories, Y = {Y α} is a refinement of
Z, and that

Z1 = Y 1 + Y 2. (10.40)

Then, by linearity,

K(Z1) = K(Y 1) +K(Y 2). (10.41)
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When a vector is written as a sum of two other vectors, the latter need not be perpendicular to
each other, and by analogy, there is no reason to suppose that the terms on the right side of (10.3)
are mutually orthogonal, 〈K(Y 1),K(Y 2)〉 = 0, as is necessary if Y is to be a consistent family.
Another way in which Y may fail to be consistent is the following. Since Y is a refinement of Z,
any projector in the sample space Z, for example Z3, belongs to the Boolean algebra generated by
Y. Because they represent mutually exclusive events, Z3Z1 = 0, and because Y 1 and Y 2 in (10.40)
are projectors, this means that

Z3Y 1 = 0 = Z3Y 2. (10.42)

In addition, the consistency of Z implies that

〈K(Z3),K(Z1)〉 = 〈K(Z3),K(Y 1)〉 + 〈K(Z3),K(Y 2)〉 = 0. (10.43)

However, this does not mean that either 〈K(Z3),K(Y 1)〉 or 〈K(Z3),K(Y 2)〉 is zero, whereas (10.21)
implies, given (10.42), that both must vanish in order for Y to be consistent.

An example which illustrates these principles is the family Y whose sample space is (10.35),
regarded as a refinement of the coarser family Z whose sample space consists of the three projectors
Y 0, Y 1 + Y 2, and Y 3 + Y 4. As the histories in Z depend (effectively) on only two times, t0 and
t1, the consistency of this family is a consequence of the general argument for the first example in
Sec. 10.3. However, the family Y is inconsistent for T (t′, t) = I.

In light of these considerations, we shall say that two or more consistent families are compatible

if and only if they have a common refinement which is itself a consistent family. In order for two
consistent families Y and Z to be compatible, two conditions, taken together, are necessary and
sufficient. First, the projectors for the two sample spaces, or decompositions of the history identity,
{Y α} and {Zβ} must commute with each other:

Y αZβ = ZβY α for all α, β. (10.44)

Second, the chain operators associated with distinct projectors of the form Y αZβ must be mutually
orthogonal:

〈K(Y αZβ),K(Y α̂Z β̂)〉 = 0 if α 6= α̂ or β 6= β̂. (10.45)

Note that (10.45) is automatically satisfied when Y αZβ = 0, so one only needs to check this
condition for non-zero products. Similar considerations apply in an obvious way to three or more
families. Consistent families that are not compatible are said to be (mutually) incompatible.


