
Chapter 2

Wave Functions

2.1 Classical and Quantum Particles

In classical Hamiltonian mechanics the state of a particle at a given instant of time is given by
two vectors: r = (x, y, z) representing its position, and p = (px, py, pz) representing its momentum.
One can think of these two vectors together as determining a point in a six-dimensional phase space.
As time increases the point representing the state of the particle traces out an orbit in the phase
space. To simplify the discussion, consider a particle which moves in only one dimension, with
position x and momentum p. Its phase space is the two-dimensional x, p plane. If, for example,
one is considering a harmonic oscillator with angular frequency ω, the orbit of a particle of mass
m will be an ellipse of the form

x = A sin(ωt+ φ), p = mAω cos(ωt+ φ) (2.1)

for some amplitude A and phase φ, as shown in Fig. 2.1.
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Figure 2.1: Phase space x, p for a particle in one dimension. The ellipse is a possible orbit for a
harmonic oscillator. The cross-hatched region corresponds to x1 ≤ x ≤ x2.
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A quantum particle at a single instant of time is described by a wave function ψ(r), a complex
function of position r. Again in the interests of simplicity we will consider a quantum particle
moving in one dimension, so that its wave function ψ(x) depends on only a single variable, the
position x. Some examples of real-valued wave functions, which can be sketched as simple graphs,
are shown in Figs. 2.2 to 2.4. It is important to note that all of the information required to describe
a quantum state is contained in the function ψ(x). Thus this one function is the quantum analog
of the pair of real numbers x and p used to describe a classical particle at a particular time.

In order to understand the physical significance of quantum wave functions, one needs to know
that they belong to a linear vector space H. That is, if ψ(x) and φ(x) are any two wave functions
belonging to H, the linear combination

ω(x) = αψ(x) + βφ(x), (2.2)

where α and β are any two complex numbers, also belongs to H. The space H is equipped with an
inner product which assigns to any two wave functions ψ(x) and φ(x) the complex number

〈φ|ψ〉 =

∫

+∞

−∞

φ∗(x)ψ(x) dx. (2.3)

Here φ∗(x) denotes the complex conjugate of the function φ(x). (The notation used in (2.3) is
standard among physicists, and differs in some trivial but annoying details from that generally
employed by mathematicians.)

The inner product 〈φ|ψ〉 is analogous to the dot product

a · b = axbx + ayby + azbz (2.4)

of two ordinary vectors a and b. One difference is that a dot product is always a real number, and
a · b is the same as b · a. By contrast, the inner product defined in (2.3) is in general a complex
number, and interchanging ψ(x) with φ(x) yields the complex conjugate:

〈ψ|φ〉 = 〈φ|ψ〉∗. (2.5)

Despite this difference, the analogy between a dot product and an inner product is useful in that
it provides an intuitive geometrical picture of the latter.

If 〈φ|ψ〉 = 0, which in view of (2.5) is equivalent to 〈ψ|φ〉 = 0, the functions ψ(x) and φ(x)
are said to be orthogonal to each other. This is analogous to a · b = 0, which means that a and
b are perpendicular to each other. The concept of orthogonal (“perpendicular”) wave functions,
along with certain generalizations of this notion, plays an extremely important role in the physical
interpretation of quantum states. The inner product of ψ(x) with itself,

‖ψ‖2 =

∫

+∞

−∞

ψ∗(x)ψ(x) dx. (2.6)

is a positive number whose (positive) square root ‖ψ‖ is called the norm of ψ(x). The integral
must be less than infinity for a wave function to be a member of H. Thus exp(−ax2) for a > 0 is
a member of H, whereas exp(ax2) is not.
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A complex linear space H with an inner product is known as a Hilbert space provided it satisfies
some additional conditions which are discussed in texts on functional analysis and mathematical
physics, but lie outside the scope of this book (see the remarks in Sec. 1.4). Because of the condition
that the norm as defined in (2.6) be finite, the linear space of wave functions is called the Hilbert

space of square-integrable functions, often denoted by L2.

2.2 Physical Interpretation of the Wave Function

The intuitive significance of the pair of numbers x, p used to describe a classical particle in one
dimension at a particular time is relatively clear: the particle is located at the point x, and its
velocity is p/m. The interpretation of a quantum wave function ψ(x), on the other hand, is
much more complicated, and an intuition for what it means has to be built up by thinking about
various examples. We will begin this process in Sec. 2.3 below. However, it is convenient at this
point to make some very general observations, comparing and contrasting quantum with classical
descriptions.

Any point x, p in the classical phase space represents a possible state of the classical particle. In
a similar way, almost every wave function in the space H represents a possible state of a quantum
particle. The exception is the state ψ(x) which is equal to 0 for every value of x, and thus has
norm ‖ψ‖ = 0. This is an element of the linear space, and from a mathematical point of view it is
a very significant element. Nevertheless, it cannot represent a possible state of a physical system.
All the other members of H represent possible quantum states.

A point in the phase space represents the most precise description one can have of the state
of a classical particle. If one knows both x and p for a particle in one dimension, that is all there
is to know. In the same way, the quantum wave function ψ(x) represents a complete description
of a quantum particle, there is nothing more that can be said about it. To be sure, a classical
“particle” might possess some sort of internal structure and in such a case the pair x, p, or r,p,
would represent the position of the center of mass and the total momentum, respectively, and one
would need additional variables in order to describe the internal degrees of freedom. Similarly, a
quantum particle can possess an internal structure, in which case ψ(x) or ψ(r) provides a complete
description of the center of mass, whereas ψ must also depend upon additional variables if it is to
describe the internal structure as well as the center of mass. The quantum description of particles
with internal degrees of freedom, and of collections of several particles is taken up in Ch. 6.

An important difference between the classical phase space and the quantum Hilbert space H has
to do with the issue of whether elements which are mathematically distinct describe situations which
are physically distinct. Let us begin with the classical case, which is relatively straightforward. Two
states (x, p) and (x′, p′) represent the same physical state if and only if

x′ = x, p′ = p, (2.7)

that is, if the two points in phase space coincide with each other. Otherwise they represent mutually

exclusive possibilities: a particle cannot be in two different places at the same time, nor can it
have two different values of momentum (or velocity) at the same time. To summarize, two states
of a classical particle have the same physical interpretation if and only if they have the same
mathematical description.
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The case of a quantum particle is not nearly so simple. There are three different situations one
needs to consider.

1. If two functions ψ(x) and φ(x) are multiples of each other, that is, φ(x) = αψ(x) for some
non-zero complex number α, then these two functions have precisely the same physical meaning.
For example, all three functions in Fig. 2.2 have the same physical meaning. This is in marked
contrast to the waves one is familiar with in classical physics, such as sound waves, or waves on
the surface of water. Increasing the amplitude of a sound wave by a factor of two means that it
carries four times as much energy, whereas multiplying a quantum wave function by two leaves its
physical significance unchanged.
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Figure 2.2: Three wave functions which have the same physical meaning.

Given any ψ(x) with positive norm, it is always possible to introduce another function

ψ̄(x) = ψ(x)/‖ψ‖ (2.8)

which has the same physical meaning as ψ(x), but whose norm is ‖ψ̄‖ = 1. Such normalized

states are convenient when carrying out calculations, and for this reason quantum physicists often
develop a habit of writing wave functions in normalized form, even when it is not really necessary.
A normalized wave function remains normalized when it is multiplied by a complex constant eiφ,
where the phase φ is some real number, and of course its physical meaning is not changed. Thus a
normalized wave function representing some physical situation still has an arbitrary phase.

Warning! Although multiplying a wave function by a non-zero scalar does not change its physical
significance, there are cases in which a careless use of this principle can lead to mistakes. Suppose
that one is interested in a wave function which is a linear combination of two other functions,

ψ(x) = φ(x) + ω(x). (2.9)

Multiplying φ(x) but not ω(x) by a complex constant α leads to a function

ψ̃(x) = αφ(x) + ω(x) (2.10)

which does not, at least in general, have the same physical meaning as ψ(x), because it is not equal
to a constant times ψ(x).
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2. Two wave functions φ(x) and ψ(x) which are orthogonal to each other, 〈φ|ψ〉 = 0, represent
mutually exclusive physical states: if one of them is true, in the sense that it is a correct description
of the quantum system, the other is false, that is, an incorrect description of the quantum system.
For example, the inner product of the two wave functions φ(x) and ψ(x) sketched in Fig. 2.3 is zero,
because at any x where one of them is finite, the other is zero, and thus the integrand in (2.3) is
zero. As discussed in Sec. 2.3, if a wave function vanishes outside some finite interval, the quantum
particle is located inside that interval. Since the two intervals [x1, x2] and [x3, x4] in Fig. 2.3 do not
overlap, they represent mutually exclusive possibilities: if the particle is in one interval, it cannot
be in the other.

x

ψ(x) φ(x)
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Figure 2.3: Two orthogonal wave functions.

In Fig. 2.4, ψ(x) and φ(x) are the ground state and first excited state of a quantum particle in
a smooth, symmetrical potential well (such as a harmonic oscillator). In this case the vanishing of
〈φ|ψ〉 is not quite so obvious, but it follows from the fact that ψ(x) is an even and φ(x) an odd
function of x. Thus their product is an odd function of x, and the integral in (2.3) vanishes. From
a physical point of view these two states are mutually exclusive possibilities because if a quantum
particle has a definite energy, it cannot have some other energy.
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Figure 2.4: Two orthogonal wave functions.

3. If φ(x) and ψ(x) are not multiples of each other, and 〈φ|ψ〉 is not equal to zero, the two
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wave functions represent incompatible states of affairs, a relationship which will be discussed in
Sec. 4.6. Figure 2.5 shows a pair of incompatible wave functions. It is obvious that φ(x) cannot
be a multiple of ψ(x), because there are values of x at which φ is positive and ψ is zero. On the
other hand, it is also obvious that the inner product 〈φ|ψ〉 is not zero, for the integrand in (2.3) is
positive, and non-zero over a finite interval.

x

ψ(x) φ(x)

x1 x2

Figure 2.5: Two incompatible wave functions.

There is nothing in classical physics corresponding to descriptions which are incompatible in
the quantum sense of the term. This is one of the main reasons why quantum theory is hard to
understand: there is no good classical analogy for the situation shown in Fig. 2.5. Instead, one has
to build up one’s physical intuition for this situation using examples that are quantum mechanical.
It is important to keep in mind that quantum states which are incompatible stand in a very different
relationship to each other than states which are mutually exclusive; one must not confuse these two
concepts!

2.3 Wave Functions and Position

The quantum wave function ψ(x) is a function of x, and in classical physics x is simply the position
of the particle. But what can one say about the position of a quantum particle described by ψ(x)?
In classical physics wave packets are used to describe water waves, sound waves, radar pulses, and
the like. In each of these cases the wave packet does not have a precise position; indeed, one would
not recognize something as a wave if it were not spread out to some extent. Thus there is no reason
to suppose that a quantum particle possesses a precise position if it is described by a wave function
ψ(x), since the wave packet itself, thought of as a mathematical object, is obviously not located at
a precise position x.

In addition to waves, there are many objects, such as clouds and cities, which do not have a
precise location. These, however, are made up of other objects whose location is more definite:
individual water droplets in a cloud, or individual buildings in a city. However, in the case of a
quantum wave packet, a more detailed description in terms of smaller (better localized) physical
objects or properties is not possible. To be sure, there is a very localized mathematical description:
at each x the wave packet takes on some precise value ψ(x). But there is no reason to suppose
that this represents a corresponding physical “something” located at this precise point. Indeed,
the discussion in Sec. 2.2 above suggests quite the opposite. To begin with, the value of ψ(x0) at a
particular point x0 cannot in any direct way represent the value of some physical quantity, since one
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can always multiply the function ψ(x) by a complex constant to obtain another wave function with
the same physical significance, and thus altering ψ(x0) in an arbitrary fashion (unless, of course,
ψ(x0) = 0). Furthermore, in order to see that the mathematically distinct wave functions in Fig. 2.2
represent the same physical state of affairs, and that the two functions in Fig. 2.4 represent distinct
physical states, one cannot simply carry out a point-by-point comparison; instead it is necessary
to consider each wave function “as a whole”.

It is probably best to think of a quantum particle as delocalized, that is, as not having a position
which is more precise than that of the wave function representing its quantum state. The term
“delocalized” should be understood as meaning that no precise position can be defined, and not
as suggesting that a quantum particle is in two different places at the same time. Indeed, we shall
show in Sec. 4.5, there is a well-defined sense in which a quantum particle cannot be in two (or
more) places at the same time.

Things which do not have precise positions, such as books and tables, can nonetheless often be
assigned approximate locations, and it is often useful to do so. The situation with quantum particles
is similar. There are two different, though related, approaches to assigning an approximate position
to a quantum particle in one dimension (with obvious generalizations to higher dimensions). The
first is mathematically quite “clean”, but can only be applied for a rather limited set of wave
functions. The second is mathematically “sloppy”, but is often of more use to the physicist. Both
of them are worth discussing, since each adds to one’s physical understanding of the meaning of a
wave function.

It is sometimes the case, as in the examples in Figs. 2.2, 2.3 and 2.5, that the quantum wave
function is non-zero only in some finite interval

x1 ≤ x ≤ x2. (2.11)

In such a case it is safe to assert that the quantum particle is not located outside this interval, or,
equivalently, that it is inside this interval, provided the latter is not interpreted to mean that there
is some precise point inside the interval where the particle is located. In the case of a classical
particle, the statement that it is not outside, and therefore inside the interval (2.11) corresponds to
asserting that the point x, p representing the state of the particle falls somewhere inside the region
of its phase space indicated by the crosshatching in Fig. 2.1. To be sure, since the actual position
of a classical particle must correspond to a single number x, we know that if it is inside the interval
(2.11), then it is actually located at a definite point in this interval, even though we may not know
what this precise point is. By contrast, in the case of any of the wave functions in Fig. 2.2 it is
incorrect to say that the particle has a location which is more precise than is given by the interval
(2.11), because the wave packet cannot be located more precisely than this, and the particle cannot
be located more precisely than its wave packet.

There is a quantum analog of the cross-hatched region of the phase space in Fig. 2.1: it is
the collection of all wave functions in H with the property that they vanish outside the interval
[x1, x2]. There are, of course, a very large number of wave functions of this type, a few of which are
indicated in Fig. 2.6. Given a wave function which vanishes outside (2.11), it still has this property
if multiplied by an arbitrary complex number. And the sum of two wave functions of this type will
also vanish outside the interval. Thus the collection of all functions which vanish outside [x1, x2]
is itself a linear space. If in addition we impose the condition that the allowable functions have a
finite norm, the corresponding collection of functions X is part of the collection H of all allowable
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wave functions, and because X is a linear space, it is a subspace of the quantum Hilbert space H.
As we shall see in Ch. 4, a physical property of a quantum system can always be associated with
a subspace of H, in the same way that a physical property of a classical system corresponds to a
subset of points in its phase space. In the case at hand, the physical property of being located
inside the interval [x1, x2] corresponds in the classical case to the crosshatched region in Fig. 2.1,
and in the quantum case to the subspace X which has just been defined.
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Figure 2.6: Some of the many wave functions which vanish outside the interval x1 ≤ x ≤ x2.

The notion of approximate location discussed above has limited applicability, because one is
often interested in wave functions which are never equal to zero, or at least do not vanish outside
some finite interval. An example is the Gaussian wave packet

ψ(x) = exp[−(x− x0)
2/4(∆x)2], (2.12)

centered at x = x0, where ∆x is a constant, with the dimensions of a length, that provides a
measure of the width of the wave packet. The function ψ(x) is never equal to zero. However, when
|x−x0| is large compared to ∆x, ψ(x) is very small, and so it seems sensible, at least to a physicist,
to suppose that for this quantum state, the particle is located “near” x0, say within an interval

x0 − λ∆x ≤ x ≤ x0 + λ∆x, (2.13)

where λ might be set equal to 1 when making a rough back-of-the envelope calculation, or perhaps
2 or 3 or more if one is trying to be more careful or conservative.

What the physicist is, in effect, doing in such circumstances is approximating the Gaussian
wave packet in (2.12) by a function which has been set equal to zero for x lying outside the interval
(2.13). Once the “tails” of the Gaussian packet have been eliminated in this manner, one can
employ the ideas discussed above for functions which vanish outside some finite interval. To be
sure, “cutting off the tails” of the original wave function involves an approximation, and as with
all approximations, this requires the application of some judgment as to whether or not one will
be making a serious mistake, and this will in turn depend upon the sort of questions which are
being addressed. Since approximations are employed in all branches of theoretical physics (apart
from those which are indistinguishable from pure mathematics), it would be quibbling to deny this
possibility to the quantum physicist. Thus it makes physical sense to say that the wave packet
(2.12) represents a quantum particle with an approximate location given by (2.13), as long as λ is
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not too small. Of course, similar reasoning can be applied to other wave packets which have long
tails.

It is sometimes said that the meaning, or at least one of the meanings of the wave function
ψ(x) is that

ρ(x) = |ψ(x)|2/‖ψ‖2 (2.14)

is a probability distribution density for the particle to be located at the position x, or found to be
at the position x by a suitable measurement. Wave functions can indeed be used to calculate prob-
ability distributions, and in certain circumstances (2.14) is a correct way to do such a calculation.
However, in quantum theory it is necessary to differentiate between ψ(x) as representing a physical

property of a quantum system, and ψ(x) as a pre-probability, a mathematical device for calculating
probabilities. It is necessary to look at examples to understand this distinction, and we shall do so
in Ch. 9, following a general discussion of probabilities in quantum theory in Ch. 5.

2.4 Wave Functions and Momentum

The state of a classical particle in one dimension is specified by giving both x and p, while in the
quantum case the wave function ψ(x) depends upon only one of these two variables. From this
one might conclude that quantum theory has nothing to say about the momentum of a particle,
but this is not correct. The information about the momentum provided by quantum mechanics is
contained in ψ(x), but one has to know how to extract it. A convenient way to do so is to define
the momentum wave function

ψ̂(p) =
1√
2πh̄

∫

+∞

−∞

exp[−ipx/h̄]ψ(x) dx, (2.15)

as the Fourier transform of ψ(x).
Note that ψ̂(p) is completely determined by the position wave function ψ(x). On the other

hand, (2.15) can be inverted by writing

ψ(x) =
1√
2πh̄

∫

+∞

−∞

exp[+ipx/h̄] ψ̂(p) dp, (2.16)

so that, in turn, ψ(x) is completely determined by ψ̂(p). Therefore ψ(x) and ψ̂(p) contain precisely
the same information about a quantum state; they simply express this information in two different
forms. Whatever may be the physical significance of ψ(x), that of ψ̂(p) is exactly the same. One
can say that ψ(x) is the position representation and ψ̂(p) the momentum representation of the
single quantum state which describes the quantum particle at a particular instant of time. (As
an analogy, think of a novel published simultaneously in two different languages: the two editions
represent exactly the same story, assuming the translator has done a good job.) The inner product
(2.3) can be expressed equally well using either the position or the momentum representation:

〈φ|ψ〉 =

∫

+∞

−∞

φ∗(x)ψ(x) dx =

∫

+∞

−∞

φ̂∗(p)ψ̂(p) dp. (2.17)

Information about the momentum of a quantum particle can be obtained from the momentum
wave function in the same way that information about its position can be obtained from the position
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wave function, as discussed above in Sec. 2.3. A quantum particle, unlike a classical particle, does
not possess a well-defined momentum. However, if ψ̂(p) vanishes outside an interval

p1 ≤ p ≤ p2, (2.18)

it possesses an approximate momentum in that the momentum does not lie outside the interval
(2.18); equivalently, the momentum lies inside this interval, though it does not have some particular
precise value inside this interval.

Even when ψ̂(p) does not vanish outside any interval of the form (2.18), one can still assign
an approximate momentum to the quantum particle in the same way that one can assign an
approximate position when ψ(x) has non-zero tails, as in (2.12). In particular, in the case of a
Gaussian wave packet

ψ̂(p) = exp[−(p− p0)
2/4(∆p)2], (2.19)

it is reasonable to say that the momentum is “near” p0 in the sense of lying in the interval

p0 − λ∆p ≤ p ≤ p0 + λ∆p, (2.20)

with λ on the order of 1 or larger. The justification for this is that one is approximating (2.19) with
a function which has been set equal to zero outside the interval (2.20). Whether or not “cutting
off the tails” in this manner is an acceptable approximation is a matter of judgment, just as in the
case of the position wave packet discussed earlier in Sec. 2.3.

The momentum wave function can be used to calculate a probability distribution density

ρ̂(p) = |ψ̂(p)|2/‖ψ‖2 (2.21)

for the momentum p in much the same way as the position wave function can be used to calculate
a similar density for x, (2.14). See the remarks following (2.14): it is important to distinguish
between ψ̂(p) as representing a physical property, which is what we have been discussing, and as
a pre-probability, which is its role in (2.21). If one sets x0 = 0 in the Gaussian wave packet (2.12)
and carries out the Fourier transform (2.15), the result is (2.19) with p0 = 0 and ∆p = h̄/2∆x. As
shown in introductory textbooks, it is quite generally the case that for any given quantum state,

∆p · ∆x ≥ h̄/2, (2.22)

where (∆x)2 is the variance of the probability distribution density (2.14), and (∆p)2 the variance
of the one in (2.21). Probabilities will be taken up later in the book, but for present purposes it
suffices to regard ∆x and ∆p as convenient, albeit somewhat crude measures of the widths of the
wave packets ψ(x) and ψ̂(p), respectively. What the inequality tells us is that the narrower the
position wave packet ψ(x), the broader the corresponding momentum wave packet ψ̂(p) has got to
be, and vice versa.

The inequality (2.22) expresses the well-known Heisenberg uncertainty principle. This principle
is often discussed in terms of measurements of a particle’s position or momentum, and the difficulty
of simultaneously measuring both of these quantities. While such discussions are not without
merit—and we shall have more to say about measurements later in this book—they tend to put
the emphasis in the wrong place, suggesting that the inequality somehow arises out of peculiarities
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associated with measurements. But in fact (2.22) is a consequence of the decision by quantum
physicists to use a Hilbert space of wave packets in order to describe quantum particles, and to
make the momentum wave packet for a particular quantum state equal to the Fourier transform of
the position wave packet for the same state. In the Hilbert space there are, as a fact of mathematics,
no states for which the widths of the position and momentum wave packets violate the inequality
(2.22). Hence if this Hilbert space is appropriate for describing the real world, no particles exist
for which the position and momentum can even be approximately defined with a precision better
than that allowed by (2.22). If measurements can accurately determine the properties of quantum
particles—another topic to which we shall later return—then the results cannot, of course, be more
precise than the quantities which are being measured. To use an analogy, the fact that the location
of the city of Pittsburgh is uncertain by several kilometers has nothing to do with the lack of
precision of surveying instruments. Instead a city, as an extended object, does not have a precise
location.

2.5 Toy Model

The Hilbert space H for a quantum particle in one dimension is extremely large; viewed as a linear
space it is infinite-dimensional. Infinite-dimensional spaces provide headaches for physicists and
employment for mathematicians. Most of the conceptual issues in quantum theory have nothing
to do with the fact that the Hilbert space is infinite dimensional, and therefore it is useful, in order
to simplify the mathematics, to replace the continuous variable x with a discrete variable m which
takes on only a finite number of integer values. That is to say, we will assume that the quantum
particle is located at one of a finite collection of sites arranged in a straight line, or, if one prefers,
it is located in one of a finite number of boxes or cells. It is often convenient to think of this system
of sites as having “periodic boundary conditions” or as placed on a circle, so that the last site is
adjacent to (just in front of) the first site. If one were representing a wave function numerically
on a computer, it would be sensible to employ a discretization of this type. However, our goal is
not numerical computation, but physical insight. Temporarily shunting mathematical difficulties
out of the way is part of a useful “divide and conquer” strategy for attacking difficult problems.
Our aim will not be realistic descriptions, but instead simple descriptions which still contain the
essential features of quantum theory. For this reason, the term “toy model” seems appropriate.

Let us suppose that the quantum wave function is of the form ψ(m), with m an integer in the
range

−Ma ≤ m ≤Mb, (2.23)

where Ma and Mb are fixed integers, so m can take on M = Ma +Mb + 1 different values. Such
wave functions form an M -dimensional Hilbert space. For example, if, Ma = 1 = Mb, the particle
can be at one of the three sites, m = −1, 0, 1, and its wave function is completely specified by the
M = 3 complex numbers ψ(−1), ψ(0) and ψ(1). The inner product of two wave functions is given
by

〈φ|ψ〉 =
∑

m

φ∗(m)ψ(m), (2.24)

where the sum is over those values of m allowed by (2.23), and the norm of ψ is the positive square
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root of
‖ψ‖2 =

∑

m

|ψ(m)|2. (2.25)

The toy wave function χn defined by

χn(m) = δmn =

{

1 if m = n,

0 for m 6= n,
(2.26)

where δmn is the Kronecker delta function, has the physical significance that the particle is at site
n (or in cell n). Now suppose that Ma = 3 = Mb, and consider the wave function

ψ(m) = χ−1(m) + 1.5χ0(m) + χ1(m). (2.27)

It is sketched in Fig. 2.7, and one can think of it as a relatively coarse approximation to a continuous
function of the sort shown in Fig. 2.2, with x1 = −2, x2 = +2. What can one say about the location
of the particle whose quantum wave function is given by (2.27)?

� � � � � � �

−3 −2 −1 0 321

Figure 2.7: The toy wave packet (2.27).

In light of the discussion in Sec. 2.3 above it seems sensible to interpret ψ(m) as signifying
that the position of the quantum particle is not outside the interval [−1,+1], where by [−1,+1]
we mean the three values −1, 0, and +1. The circumlocution “not outside the interval” can be
replaced with the more natural “inside the interval” provided the latter is not interpreted to mean
“at a particular site inside this interval”, since the particle described by (2.27) cannot be said to be
at m = −1 or at m = 0 or at m = 1. Instead it is delocalized, and its position cannot be specified
any more precisely than by giving the interval [−1,+1]. There is no concise way of stating this in
English, which is one reason we need a mathematical notation in which quantum properties can be
expressed in a precise way—this will be introduced in Ch. 4.

It is important not to look at a wave function written out as a sum of different pieces whose
physical significance one understands, and interpret it in physical terms as meaning the quantum
system has one or the other of the properties corresponding to the different pieces. In particular,
one should not interpret (2.27) to mean that the particle is at m = −1 or at m = 0 or at m = 1.
A simple example which illustrates how such an interpretation can lead one astray is obtained by
writing χ0 in the form

χ0(m) = (1/2)[χ0(m) + iχ2(m)] + (1/2)[χ0(m) + (−i)χ2(m)]. (2.28)
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If we carelessly interpret “+” to mean “or”, then both of the functions in square brackets on the
right side of (2.28), and therefore also their sum, have the interpretation that the particle is at 0
or 2, whereas in fact χ0(m) means that the particle is at 0 and not at 2. The correct quantum-
mechanical way to use “or” will be discussed in Secs. 4.5, 4.6 and 5.2.

Just as ψ(m) is a discrete version of the position wave function ψ(x), there is also a discrete
version ψ̂(k) of the momentum wave function ψ̂(p), given by the formula

ψ̂(k) =
1√
M

∑

m

exp[−2πikm/M ]ψ(m), (2.29)

where k is an integer which can take on the same set of values as m, (2.23). The inverse transfor-
mation is

ψ(m) =
1√
M

∑

k

exp[2πikm/M ]ψ̂(k). (2.30)

The inner product of two states, (2.24), can equally well be written in terms of momentum wave
functions:

〈φ|ψ〉 =
∑

k

φ̂∗(k)ψ̂(k). (2.31)

These expressions are similar to those in (2.15) to (2.17). The main difference is that integrals
have been replaced by sums. The reason h̄ has disappeared from the toy model expressions is that
position and momentum are being expressed in dimensionless units.


