What Is Quantum Information?

Robert B. Griffiths
Carnegie-Mellon University
Pittsburgh, Pennsylvania

Research supported by the
National Science Foundation

- References (work by R. B. Griffiths)
 - “Nature and location of quantum information.”
 - “Channel kets, entangled states, and the location of quantum information,”
 - *Consistent Quantum Theory* (Cambridge 2002)
 http://quantum.phys.cmu.edu/
Introduction

• What is quantum information? Precede by:
 ○ What is information?
 ○ What is classical information theory?

• What is information? Example, newspaper
 ○ Symbolic representation of some situation
 ○ Symbols in newspaper *correlated* with situation
 ○ Information is *about* that situation
Classical Information Theory

- Shannon:
 - “Mathematical Theory of Communication” (1948)
 - One of major scientific developments of 20th century
 - Proposed *quantitative* measure of information

- Information entropy

\[
H(X) = - \sum_i p_i \log p_i
\]

- Logarithmic measure of missing information
- *Probabilistic* model: \(\{p_i\} \) are probabilities
- Applies to classical (macroscopic) signals

- Coding theorem: Bound on rate of transmission of information through noisy channel
Quantum Information Theory (QIT)

- Goal of QIT: “Quantize Shannon”
 - Extend Shannon’s ideas to domain where quantum effects are important
 - Find quantum counterpart of $H(X)$

- We live in a quantum world, so
 - QIT should be the *fundamental* info theory
 - Classical theory should emerge from QIT
 - Analogy: relativity theory \rightarrow Newton for $v \ll c$
QIT: Current Status

- Enormous number of published papers
 - Does activity = understanding?

- Some topics of current interest:
 - Entanglement
 - Quantum channels
 - Error correction
 - Quantum computation
 - Decoherence

- Unifying principles have yet to emerge
 - At least, they are not yet widely recognized
QIT: Proposals

Published answers to question:
What is Quantum Information?

- Bennett and Shor (1998)
 ○ Qm ↔ Cl info is like complex ↔ real numbers
 – Interesting analogy, but what are the details?

- Deutsch and Hayden (2000)
 ○ Technical idea using Heisenberg representation
 – Causality, not information in Shannon sense

- Brukner and Zeilinger (2001)
 ○ Shannon ideas don’t work in quantum domain
 – But they do, if quantum probabilities correctly defined

- Caves, Fuchs, Schack (2002 and later)
 ○ Quantum wavefunction represents our knowledge
 – Our knowledge of what?
QIT: Problem

- Quantizing Shannon faces a fundamental problem
 - Shannon theory based on *probabilities*
 - What *quantum* probabilities to put in formulas?

- Textbook (Copenhagen) quantum mechanics:
 - Probabilities \leftrightarrow *measurement outcomes*
 - Measurement outcomes are macroscopic (classical)
 - Measurements *do not* reveal quantum properties
 - So provide no basis for *quantum* information

- Solution: Modernize the textbooks!
 - Measurements *do* reveal quantum properties
 - *Quantum* probabilities possible *if* one uses a *consistent* formulation of quantum theory!
Consistent Quantum Information

- Histories approach to quantum probabilities
 - Developed by Gell-Mann, Griffiths, Hartle, Omnès
 - Precise mathematical, logical rules
 - Apply to quantum systems of any size
 - Consistent results; always know what you’re doing

- Naive quantum probability assignments
 - Result in paradoxes, mysteries, confusion

- Histories approach employs:
 - Many frameworks for quantum probabilities
 - Consistent probabilities in each framework
 - Cannot combine probabilities from incompatible frameworks

- Different incompatible frameworks ↔ different types / kinds / species of quantum information
 - Different species cannot be combined!

- Will use “multiple species” approach to discuss
 - “One bit” and ordinary (two bit) teleportation
 - Decoherence
Spin 1/2 Example

- Measure S_x using Stern-Gerlach
 - Result is $S_x = +1/2$ or $S_x = -1/2$ (units of \hbar)
 - Measurement *outcome* (pointer position) provides information about S_x before measurement took place.
 - Call this X *information* about the particle

- Measure S_z using Stern-Gerlach
 - Result is $S_z = +1/2$ or $S_z = -1/2$
 - Call this Z *information* about the particle

- X info and Z info are *incompatible*, different species, they cannot be combined.

- “$S_x = +1/2$ AND $S_z = +1/2$” is *meaningless*
 - Corresponds to nothing in Hilbert space
 - So quantum mechanics assigns it no meaning

- “$S_x = +1/2$ OR $S_z = +1/2$” is also meaningless

- “$S_x = +1/2$ AND $S_x = -1/2$” is meaningful, FALSE
 - Just one kind or species of information involved

- “$S_x = +1/2$ OR $S_x = -1/2$” meaningful and TRUE
Classical Information

- Macroscopic object with angular momentum L
 - One can measure L_x or L_z
 - Different pieces of information, same species
 - Can be combined in a meaningful way
 - “$L_x = 5$ Js AND $L_z = 7$ Js” makes sense

- We live in a quantum world!
 - Need only one quantum info species for macro world
 - By convention, this species is “classical information”
 - There is no classical information that is not some sort of quantum information.
Quantum Channel

- One-qubit (spin-half particle) quantum channel
 \[
 |\psi\rangle \xrightarrow{\text{Pipe}} |\psi\rangle
 \]

- Perfect channel: \(|\psi_{\text{out}}\rangle = |\psi_{\text{in}}\rangle \)
 - \(Z \) info: \(S_z = +\frac{1}{2}, -\frac{1}{2} \leftrightarrow |\psi_{\text{in}}\rangle = |0\rangle, |1\rangle \)
 - \(X \) info: \(S_x = +\frac{1}{2}, -\frac{1}{2} \leftrightarrow |\psi_{\text{in}}\rangle = |+\rangle, |-\rangle \)
 - *Only one* species goes through at one time
 - *Any* species is correctly transmitted

- Long distance transmission problem

 \[
 |\psi\rangle \xrightarrow{\text{Measure } S_z} \xrightarrow{\text{Cl channel}} |\psi\rangle?
 \]

 - Can send \(Z \) information, but not \(X \) information
 - Alternative measurement: send \(X \) info, not \(Z \)

- Cannot make Qm channel using Cl channel
 - Cl channel transmits *only one* species of Qm info
 - Qm channel transmits *all* species
Teleportation

- **Teleportation**: Bennett et al. (1993)

 \[|\psi\rangle \quad \text{Measurement} \]

 - **Requirements:**
 - Shared entangled state already exists
 - Correlated measurement of two qubits
 - Two bits to send measurement outcome to \(B \)
 - Two unitary corrections by \(B \)

- **Why two classical bits? Why not one? or three?**

- **One-bit Teleportation**: Zhou et al. (2000)

 \[|\psi\rangle \quad \text{One classical bit} \]

 - No entangled, state, only one classical bit, but
 - Requires nonlocal CNOT gate between \(A \) and \(B \)
One-Bit Teleportation: Z Information

- Circuit: Original and Quantized

\[\begin{align*}
|\psi\rangle & \quad A & H & \quad |\psi\rangle \\
|0\rangle & \quad B & Z & \quad |\psi\rangle \quad \quad \quad \quad \quad |0\rangle & \quad B & Z & \quad |\psi\rangle \\
\end{align*} \]

- Z information (S_z) about initial state of A qubit:
 - Z info = difference between initial $|0\rangle$ and $|1\rangle$
 - Is \textit{copied} to B by the CNOT gate
 - Is unaffected by final Z gate:
 \[
 Z|0\rangle = |0\rangle, \quad Z|1\rangle = -|1\rangle
 \]
 (phase -1 is unimportant for Z information)

- Conclusion: Z info arrives unaltered at output
 - Even if classical bit (or quantum counterpart) omitted
One-Bit Teleportation: X Information

- X information (S_x) about initial state of A qubit:
 - X info = difference between initial $|+\rangle$ and $|--\rangle$

- CNOT puts it in *correlation* between A and B qubits:

 \[
 |+\rangle \rightarrow \frac{1}{2}(|++\rangle + |--\rangle), \quad S_{Ax} = S_{Bx}
 \]

 \[
 |--\rangle \rightarrow \frac{1}{2}(|+-\rangle + |-+\rangle), \quad S_{Ax} = -S_{Bx}
 \]
 - X info *not* present in individual A, B qubits

- Hadamard H gate converts X to Z:
 - Case $|+\rangle \rightarrow |0\rangle$, no correction needed
 - Case $|--\rangle \rightarrow |1\rangle$, final Z gate changes $|+\rangle \leftrightarrow |--\rangle$

- Conclusion: X info arrives unaltered at output
 - Classical bit (or quantum counterpart) is essential
 - X info not in classical bit *by itself*
Information In Correlations

• Information in correlations is a classical, not a special quantum concept

• Illustration: C sends message by
 ○ Mailing colored slips of paper to A and B
 ○ Colors are red (R) or green (G)
 ○ Message 0: Same color (RR or GG) to A, B
 ○ Message 1: Different colors (RG or GR) to A, B

• Neither A nor B *individually* can read the message
 ○ Information of 0 vs. 1 is in *correlation* of colors
“Presence” Theorem

• One-bit teleportation works for Z info and X info
 ○ What about Y info? Other species?
 ○ We don’t need to check them all because of the:

• Presence Theorem (qubits): If *any two incompatible* species of information are correctly transmitted from input to output, the same is true of all species.
 ○ Theorem applies to noise-free transmission
 ○ Refers to two incompatible species, so this is a quantum information theorem, no classical counterpart

• Generalization to d-dimensions: If *two* “sufficiently incompatible” species are correctly transmitted, all species are correctly transmitted (channel is perfect).
 ○ Example: two orthonormal bases $\{|a_j\rangle\}$ and $\{|\bar{a}_k\rangle\}$, with $\langle a_j | \bar{a}_k \rangle \neq 0$ for all j, k, are sufficiently incompatible
Regular (2 Bit) Teleportation

- Circuit:

\[
\begin{array}{c}
|\psi\rangle \rightarrow c \\
\xrightarrow{H} \\
\xrightarrow{Z \text{ info}} \\
\xrightarrow{X \text{ info}} \\
\xrightarrow{X} \\
\xrightarrow{Z} \\
\xrightarrow{|\psi\rangle} \\
\end{array}
\]

\[
\frac{|00\rangle + |11\rangle}{\sqrt{2}}
\]

- One “classical” bit carries Z, the other X information
 - Use only “X” bit: will transmit X info
 - Use only “Z” bit: will transmit Z info
 - Quantization of circuit left as exercise

- Each species of information is in a *correlation* between the “classical” bit and the b qubit
 - Measuring classical bit tells one nothing
 - Measuring the b qubit tells one nothing

- Teleportation needs 2 classical bits because
 - There is *more than one* species of quantum info
 - If *two* species correctly transmitted, others follow
 - So do not need three (or more) bits

- d-dimensional teleportation (qudit): same argument
 - Two incompatible species $\Rightarrow 2 \log_2 d$ classical bits
Decoherence: Introduction

- Decoherence results when a quantum system interacts with its (quantum) environment
- Old perspective: Off-diagonal elements of density matrix go to zero
- New perspective (Zurek): *Information* flows from system to environment
- What can we learn using incompatible species of info?
Example: Interferometer

- No decoherence, particle initially in $|p+\rangle$

 $|p+\rangle := (|p_0\rangle + |p_1\rangle)/\sqrt{2} \rightarrow |q_0\rangle$

 $|p-\rangle := (|p_0\rangle - |p_1\rangle)/\sqrt{2} \rightarrow |q_1\rangle$

 - Particle emerges in q_0, not q_1, because of *coherence*

- Decoherence:
 - Which path, $|p_0\rangle$ vs $|p_1\rangle$, info \rightarrow environment
 - Particle emerges randomly in q_0 or q_1

- Interpretation using different incompatible species:
 - Z (which path) info: $|p_0\rangle$ vs $|p_1\rangle$
 - X (which phase) info: $|p+\rangle$ vs $|p-\rangle$
 - Decoherence means X (which phase) information has vanished when particle exits interferometer

- Z info in environment $\Rightarrow X$ info absent at output
 - Consequence of Absence Theorem
“Absence” Theorem

• Theorem. Three systems A, B, C. If Z info about A is *present* in B, then X info about A is *absent* from C.

 ○ Two incompatible species; this is a *quantum* information theorem

 ○ Present = perfectly present, Absent = perfectly absent

• Application to decoherence:

 • If which path (Z) info about particle (A) entering interferometer is in the environment (B), coherent (X) info not present in particle (C) exiting interferometer, so there is *no interference*

 ○ Particle at earlier (A) and later (C) times can be thought of as two systems when applying the theorem
General “Absence” Theorem

- Three systems: A, B, C. Dimension d of A arbitrary. $\mathcal{Z} = \{|a_j\rangle\}$, $\mathcal{X} = \{|\tilde{a}_k\rangle\}$ mutually unbiased bases of A.
- Theorem. If \mathcal{Z} info about A is *present* in B, then \mathcal{X} info about A is *absent* from C.

- Present = perfectly present, Absent = perfectly absent
- There may be better ways of wording the theorem
Decoherence: Conclusion

- If a particular species (“pointer basis”) of information about the (earlier) state of a quantum system is available at some place in the environment, then other maximally-incompatible species of information about the same system will not be present at other places in the environment, or in the system itself.
 - (Pace Zurek) It does not matter how many different places in the environment the information is located.
 - It must be “clearly” present in (at least) one place.
 - Generalization of Absence Theorem to partial presence or absence would be worthwhile.
Summary

- By distinguishing different incompatible species we can:
 - Trace information flow in teleportation
 - See why 2 classical bits are needed
 - Or 1 classical bit for 1-bit teleportation
 - Understand decoherence as a process in which spreading one species of information excludes others

- Open issues:
 - Extend “Presence”, “Absence” theorems to *partial* presence/absence
 - Can information species be used to clarify asymptotic properties (channel capacities of various sorts)?